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요   약 
 

Unsupervised deep learning methods have shown impressive results for the challenging 
monocular depth estimation task, a field of study that has gained attention in recent years. A 
common approach for this task is to train a deep convolutional neural network (DCNN) via an image 
synthesis sub-task, where additional views are utilized during training to minimize a photometric 
reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed 
depth estimation range, irrespective of its possible range for a given image, leading to suboptimal 
estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth 
estimation method guided by minimum and maximum (min-max) depth priors for a given input 
image. The incorporation of min-max depth priors can drastically reduce the depth estimation 
complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel 
network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the 
min-max depth estimation in its front side. Intensive experimental results demonstrate that the 
adaptive depth estimation can significantly boost up the accuracy with a fewer number of 
parameters over the conventional approaches with a fixed minimum and maximum depth range.  

 

1. Introduction 

Extracting the underlying 3D information of a scene from 
a single image is the holy grail of computer vision as it opens 
the door to multiple exciting and useful applications ranging 
from robotics and navigation to virtual and augmented reality 
(VR/AR). However, it is now in recent years with the advances 
in deep learning and convolutional neural networks (CNN) 
that monocular depth estimation has become a booming 
research field. The previous classical techniques performed 
poorly due to the use of fixed assumptions or handcrafted 
feature extractors. On the other hand, the learning-based 
approaches automatically learn to extract global and local 

features useful for depth estimation and can be divided into 
supervised and unsupervised (or self-supervised) methods. 
Supervised methods [1, 2] for monocular depth estimation 
require the hard-to-obtain depth ground truth (GT) data for 
training and tend to focus on new network architectures. In 
contrast, the unsupervised methods [3-5], with no depth GT, 
have an orientation for designing new loss functions or 
operations that better exploit geometrical constraints 
between the target view and the additional reference views. 
These other views usually come in the form of monocular 
video or stereo pairs, which are only available during training.  

2. Method 
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The motivation for our work arises from observing the 
behavior of DCNNs trained for monocular depth estimation 
when configured to estimate depths at different ranges. We 
first observed that all previous works set fixed min-max depth 
ranges as hyper-parameters, within which their methods are 
bound to estimate. In particular, the methods [3-5] that use 
stereo pairs as training data make predictions in terms of 
inverse depth or disparity. In these works, the minimum 
disparity is usually set to 0, and the maximum disparity is set 
to an arbitrary value smaller than the training sub-image 
sizes (usually 512 pixels). We trained our implementations of 
Monodepth [4] and Deep3D [3] with various ranges of inverse 
depths (or disparities), as shown in Table 1, and noticed that 
the selection of the minimum and maximum disparity hyper-
parameters does affect the performance of the depth 
estimation networks. To see how the hyper-parameters affect 
the depth learning, we chose different disparity ranges from 
0 to 256, including a minimum disparity of 4.7 pixels, which 
translates to a depth of roughly 80m in the KITTI [6] dataset, 
a common maximum depth used for evaluation in most 
previous works. Interestingly, we observed a tendency of 
higher accuracy as we reduce the range of the estimated 
disparities, as shown in Table 1. The effect of minimum and 
maximum disparity hyper-parameters is more critical for our 
Deep3D implementation, with a difference of 6.7% in 𝑎ଵ 
accuracy between the model trained with a max disparity of 
256 and the same model trained with a max disparity of 100. 
While the numerical results in Table 1 look impressive, and 
are much better than their original works [3, 4], they should 
be taken with a grain of salt as the reduced range could 
increase over-fitting and renders the models useless for 
closer or farther away objects that lay outside the pre-defined 
min-max range. For this reason, in conventional approaches, 
there will always be a trade-off between the performance of 
depth estimation and the min-max depth range detection 
when setting these as fixed hyper-parameters. To alleviate 
this problem, our proposed adaptive depth estimation method 
provides DCNNs with means of adaptation to per-image depth 
distributions. 

2.1 Proposed minimum and maximum depth estimation 

To provide adaptive depth cues to the monocular depth 
estimation networks, we first pre-train our novel min-max 
estimation sub-network, the mmd-subnet. Our mmd-subnet 
is also trained in an unsupervised fashion. For natural scene 
datasets such as KITTI [6], it is impossible to train the mmd-
subnet in a supervised manner, as the provided sparse LiDAR 
sensor depth GT data does not take into account all objects in 
the scene and has detection range limitations. 

 
Figure 1. Our min-max depth (mmd) sub-network. 

-Mmd-subnet architecture. Figure 1 shows the architecture 
of our mmd-subnet, which takes as input a single image and 
outputs two scalars, the minimum and maximum disparity 
values in the scene. The mmd-subnet has a relatively low 

parameter count of 4M parameters during inference and 
performs inference in less than 12ms on a Titan XP GPU on a 
375x1242 image. The mmd-subnet has an encoder-decoder-
encoder architecture. The first encoder section of the mmd-
subnet is made of 7 “EBlocks”, each of which is made of one 
convolution and one residual block. To reduce the parameter 
count and inference time, we utilize 3x1 and 1x3 convolutions 
in the residual blocks. The decoder part is made of 3 
“DBlocks”, each of which is made of a nearest upscale 
operation followed by a convolution, a skip connection from 
the encoder part, and another conv layer. During testing, only 
one DBlock is needed to generate the features for min-max 
depth estimation. These features are encoded again into a 
fewer channel feature map by two conv layers and then 
reduced to a vector via global max pooling. We observed that 
global max-pooling yielded better results than global average 
pooling, which is understandable, as the min-max depth 
priors are in highly localized pixel locations and cannot be 
well represented by an averaging operation. A fully connected 
layer is then incorporated for the final estimation of the min-
max depths, 𝑑௠௜௡ and 𝑑௠௔௫, of the single image input. 

Table 1. Training Monodepth [4] and Deep3D [3] with different 
min-max disparity ranges (pixel units) the KITTI2015 train 
dataset [6]. Arrows indicate the better metric  
 

Min/Max abs rel↓ sq rel↓ rms↓ Log rmse↓ 𝑎ଵ ↑ 
Monodepth [4] 

0/256 0.136 2.513 6.256 0.277 0.878 
0/154 0.132 2.421 6.165 0.226 0.880 

4.7/135 0.135 2.445 6.180 0.224 0.881 
4.7/100 0.134 2.511 6.241 0.227 0.880 

Deep3D [3] 
0/256 0.134 1.206 6.483 0.242 0.830 
0/154 0.140 1.197 6.262 0.231 0.831 

4.7/135 0.103 0.832 5.431 0.185 0.881 
4.7/100 0.094 0.710 4.717 0.165 0.897 

-Training strategy of the mdd-subnet. During training only, 
the decoder part gradually upscales and fuses the encoder 
features up to a scale of 1/8 of the input image, where the 
resulting features are nearest-upscaled to the input 
resolution and fed to our image synthesis module (explained 
in depth in Section 2.2) for right-view synthesis of 𝐼ோ

௠௠ and 
the disparity estimation of 𝐷௠௠

ᇱ  . This module aids in the 
training of the first encoder-decoder and provides min-max 
proxy labels for the second encoder part. We adopted our 
image synthesis module not only because it showed state-of-
the-art results for depth estimation, but more importantly, 
because it presents considerably good detection of thin 
objects and complex structures, critical for min-max depth 
prediction. The mmd-subnet is trained to minimize a min-
max depth loss and a synthesis loss between the synthetic 
image 𝐼ோ

௠௠ and the GT right view 𝐼ோ, given by 

𝑙௠௠ௗ = 𝑙ଵ൫𝑑௠௜௡, 𝑚𝑖𝑛(𝐷௠௠
ᇱ )൯ + 𝑙ଵ൫𝑑௠௔௫, 𝑚𝑎𝑥(𝐷௠௠

ᇱ )൯ + 𝑙௦௬௡(𝐼ோ
௠௠, 𝐼ோ)   (1) 

2.2 Adaptive depth guided by min-max depth priors 

To perform adaptive depth estimation, a DCNN first needs 
the minimum and maximum depth information for any given 
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single-view input image. Any DCNN for monocular depth 
estimation can perform adaptive depth estimation by 
attaching our novel mmd-subnet upfront. The min and max 
depth values are stretched to the input image resolution and 
concatenated with the input view to provide prior knowledge 
to the network. Similarly, the min-max depth values are used 
at the network's output to re-scale the final depth predictions 
for the networks that perform direct estimation, as in [4], and 
to control the sampling positions or receptive field sizes of the 
adaptive convolutional operations for the networks that 
obtain depth with indirect methods, as in [3]. A ±5% is allowed 
in the estimated min-max depth priors to handle the possible 
inaccuracies in the mmd-subnet. 

 
Figure 2. Our proposed AdaMM-DepthNet. Operations 
needed for depth estimation are shown filled in green. 

2.3 Our proposed AdaMM-DepthNet 

With the min-max depth prior estimated by our mmd-
subnet, we construct an adaptive monocular depth estimation 
network, the AdaMM-DepthNet (depicted in Figure 2), which 
estimates full-resolution depth maps while maintaining a 
lower number of parameters, compared to the previous works 
[2-5]. We train our AdaMM-DepthNet via a stereoscopic view 
synthesis sub-task from a single left-view image 𝐼௅ for which 
we define the following image synthesis model 

𝐼ோ
ᇱ = (1 − 𝑀) ⊙ 𝐼ோ

௩௜௦ + 𝑀 ⊙ 𝐼ோ
௢௖௖                    (2) 

which describes a synthetic right-view image 𝐼ோ
ᇱ   as a 

combination of the visible (in both views) right image contents 
𝐼ோ

௩௜௦ and the occluded contents 𝐼ோ
௢௖௖  which are only visible in 

the right view. ⊙  denotes the element-wise multiplication 
operation. 𝑀  is the blending mask between the visible and 
occluded pixels. Due to the geometrical constraints in stereo 
image pairs, the 𝐼ோ

௩௜௦  is highly correlated to the depth (or 
disparity) of the scene. Note that some previous methods 
ignore occlusions in their formation models [5] and others 
include occlusions in a single operation [3]. In contrast, our 
synthesis model explicitly generates both visible and occluded 
content images and blends them to generate the final 
synthetic right-view. The visible contents image is defined as 

𝐼ோ
௩௜௦ = ∑ 𝑔௛ ቀ𝐼௅,

௜

ேಽ

(𝑑௠௔௫ − 𝑑௠௜௡) + 𝑑௠௜௡ ቁ
ேಽ
௜ୀ଴ ⊙ 𝐷௜

௣       (3) 

where 𝑔௛(௩)(⋅) is a horizontal (vertical) shift operation, which 
can take fractional units (supported by bilinear interpolation), 
𝑁௅ is the number planes, and 𝐷௣ is the disparity probability 
volume, which is given by 

𝑀, 𝐷௣  =  σ ൬𝑀଴, ቄ𝑔௛ ቀ𝐷௜
௅ ,

௜

ேಽ
 (𝑑௠௔௫   −  𝑑௠௜௡) +  𝑑௠௜௡ ቁቅ

௜ୀ଴

ேಽ

 ൰  (4) 

where 𝐷௅   are the disparity logits generated by the AdaMM-
DepthNet. 𝑀଴ is an output of our network that helps guiding 
the channel-wise softmax operation σ(⋅) when obtaining 𝑀, 𝐷௣. 
To estimate the occluded content image 𝐼ோ

௢௖௖ , we make use of 
our implementation of adaptive separable convolutions by 

𝐼ோ
௢௖௖ = ∑ 𝑔௩ ቀ∑ 𝑔௛ ቀ𝐼௅, −

଴.ହ௝

ே೓
 𝑑௠௔௫ቁ

ே೓
௝ୀ଴ ⊙ 𝐾௛,

௜ି ଴.ହேೡ

ேೡ
 𝑑௠௔௫ ቁ

ேೡ
௜ୀ଴ ⊙ 𝐾௩    (5) 

where 𝐾௛  and 𝐾௩  are the horizontal and vertical 1D kernel 
components generated by our AdaMM-DepthNet with 𝑁௛ and 
𝑁௩ number of kernel elements respectively. It can be noted in 
the use of the negative sign in the horizontal component 
operation that Eq. (5) only samples pixels to the opposite side 
(including upper and lower pixels) to the operation in Eq. (3). 
This is done intentionally in order to enforce the network to 
keep stereo correspondences on Eq. (3), in other words, 𝐾௛ 
and 𝐾௩ prevent the disparity logits 𝐷௅  from learning occlusion 
information. Under this condition, the final disparity estimate 
𝐷′ can be obtained from 𝐷௅   by 

𝐷ᇱ = 𝑑௠௜௡ + (𝑑௠௔௫ − 𝑑௠௜௡) ∑
௜

ேಽ

ேಽ
௜ୀଵ σ(𝐷௅)௜            (6) 

2.4 Unsupervised loss functions for depth estimation 

To train the Monodepth for adaptive depth estimation, the 
photometric, smoothness, and consistency loss functions 
defined in its original work [4] were utilized. For training our 
Deep3D implementation and our AdaMM-DepthNet for 
adaptive depth estimation, we use an image synthesis loss 
which is a combination of 𝑙ଵ  and perceptual loss 𝑙௣ . 𝑙௣  is 
balanced by α௣, which was empirically set to 0.01, as given by 

𝑙௦௬௡ = 𝑙ଵ + α௣𝑙௣ = |𝐼ோ − 𝐼ோ
ᇱ |ଵ + α௣ ∑ ቚห𝜙௟ (𝐼ோ) − 𝜙௟ (𝐼ோ

ᇱ )หቚ
ଶ

ଶ
ଷ
௟ୀଵ   (7) 

3. Experiments 

3.1 Details of implementation, datasets and evaluations 

For fair and extensive comparison with previous works, 
we train all our networks for 50 epochs on the KITTI Eigen 
train split [1] by the Adam optimizer, with an initial learning 
rate of 0.0001 (halved at epochs 30 and 40), a batch size of 8 
and a sub-image size of 256x512. During training, data 
augment-ations are incorporated on the fly with random crop, 
random horizontal flip, random gamma, random brightness, 
and individual color brightness. The KITTI Eigen split [1] 
consists of 22,600 image pairs that are selected from the 
stereo KITTI [6] dataset, avoiding static car frames to ensure 
diversity. To measure the performance of our networks, we 
use the various KITTI metrics defined in [1]. We ablate our 
networks on the KITTI2015 scene-flow training dataset [6], 
which contains 200 images with CAD-refined sparse LiDAR 
depth ground truth. To intensively compare ours against a 
broader spectrum of previous works, we test our method on 
the improved KITTI Eigen test split [1], which contains 652 
images with sparse (but improved) LiDAR depth GT of scenes 
excluded from the training split. 
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3.2 Ablation studies 

To show the effectiveness of our proposed adaptive depth 
estimation, we compared the conventional methods, 
Monodepth [4] and Deep3D [3], against their variations with 
our mmd-subnet upfront which are called Monodepth-mmd 
and Deep3D-mmd, respectively. In Table 2, it is obvious that 
the two variations (Monodepth-mmd and Deep3D-mmd), 
significantly outperform the conventional methods with fixed 
min-max disparity hyperparameters. In particular, the 
Deep3D-mmd, showed a significant improvement of 7.3% in 
𝑎ଵ accuracy versus its conventional counterpart. 

3.3 Results on KITTI 

Table 3 compares our AdaMM-DepthNet against various 
existing works for unsupervised and supervised depth 
estimation on the KITTI Eigen test split [1]. As can be noted, 
our AdaMM-DepthNet remarkably outperforms all the 
unsupervised methods, even without any post-processing (PP) 
step nor stereo-SMG supervision, which are required in the 
previous SOTA methods of DepthHints [5]. When applying a 
PP step following [4], our AdaMM-DepthNet outperforms the 
previous supervised method of DORN [2] in most metrics. 
Additionally, our AdaMM-DepthNet achieves superior 
performance with a modest number of parameters (22M), in 
comparison with the previous SOTA (35M in DepthHints[5] and 
51M in DORN [2]). Figure 3 shows the visual comparison of our 
method against the previous works. It can be observed that 
our AdaMM-DepthNet produces more consistent depths with 
better detection of fine details in thin structures like traffic 
signs and pedestrians. 

 

 
Figure 3. Qualitative comparison with other methods. 

Table 2. Effect of min-max depth priors on Monodepth [4] and 
Deep3D [3] on the KITTI2015 dataset [6]. 
 

Network abs rel↓ sq rel↓ RMSE↓ RMSElog↓ 𝑎ଵ ↑ 
Monodepth [4] 0.136 2.513 6.265 0.227 0.878 

Monodepth-mmd 0.135 2.435 6.173 0.228 0.880 
Deep3D [3] 0.134 1.206 6.483 0.242 0.830 

Deep3D-mmd 0.096 0.671 4.403 0.159 0.903 

4. Conclusions 
We presented a novel unsupervised adaptive depth 

estimation method for monocular images, which incorporates 
our novel mmd-subnet for min-max depth prior estimation at 
the front. Through extensive experiments, we showed that 
such min-max depth priors are fundamentally important for 
the depth estimation task, which enables our monocular 
depth estimation network, the AdaMM-DepthNet to 
outperform the recent SOTA methods. Furthermore, we 
proposed an effective image synthesis model that can 

generate occluded and visible components in synthesized 
images, allowing for better learning of monocular image 
depth. This image synthesis model is used to train our 
proposed AdaMM-DepthNet, which also incorporates our 
mmd-subnet upfront and outperforms previous self-
supervised methods that learn from stereo images by 
considerable margins. 

Table 3. Evaluation on the KITTI Improved Eigen split [1]. PP: 
post-processing. Our method achieves the best performance. 
 

Network abs rel↓ sq rel↓ RMSE↓ RMSElog↓ 𝑎ଵ ↑ 
DORN [2] 0.072 0.307 2.727 0.120 0.932 

DepthHints [5] (PP) 0.074 0.364 3.202 0.114 0.936 
AdaMM-DepthNet 0.073 0.317 2.995 0.110 0.938 

AdaMM-DepthNet (PP) 0.070 0.300 2.906 0.108 0.940 
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