• 제목/요약/키워드: Depth of discharge

Search Result 522, Processing Time 0.032 seconds

An Analysis of Runoff Characteristics at Creeks (소하천 유역의 유출변화 특성분석)

  • Jung, Jae-Wook;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.75-83
    • /
    • 2001
  • In this study, the maintenance problems were investigated through checking the creeks which were improved by close-to-nature river improvement technique. The characteristics of flow were measured at Changsa Creek in Suwon city. The computational results of numerical model with kinematic wave theory was evaluated through observation data about precipitation, velocity, and flow depth. Furthermore, SCS, Clark, and RRL models were compared to the actual observations. As a result, the kinematic wave theory's calculated peak time of discharge concentration occurred little earlier than the actual observation, but the tendency of hydrograph coincided with observation.

  • PDF

A New Technology for Strengthening Surface of Forging Die

  • Xin Lu;Zhongde Liu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.189-192
    • /
    • 2003
  • The Electro-thermal Explosion Coating (EEC) technique is a new surface treatment technology emerged in recent years. It uses an electrical discharge (with very high voltage from 5 to 30 kV or more) to produce a pulse current with large density inside the material to be deposited, the metal wire undergo the heating, melting, vaporization, ionization and explosion processes in a very short time (from tens ns to several hundreds ${\mu}s$), and the melted droplets shoot at the substrate with a very high velocity (3000 - 4500 m/s), so that the coating materials can be deposited on the surface of the substrate. Coatings with nano-size grains or ultra- fine grains can be formed because of rapid solidification (cooling rate up to $10^6-10^9\;k/s$). Surface of the substrate (about $1-5{\mu}m$ in depth) can be melted rapidly and coatings with very high bonding strength can be obtained.

  • PDF

Fabrication of Micro-tool by Micro-EDM and Its Applications (방전 가공을 이용한 미세 공구 제작과 응용)

  • 김보현;김동준;이상민;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1902-1906
    • /
    • 2003
  • Micro-milling is an efficient method for fabricating micro structures because of its high machining rate compared with other non-conventional micro machining processes. But it is not easy to make a micro milling tool with less than 50 $\mu\textrm{m}$ in diameter by conventional machining. In this study, the characteristics of a micro milling tool fabricated by wire electrical discharge machining (WEDM) were studied. The workpiece is copper and stainless steel. The effects of some machining conditions such as feed rate, depth of cut, and a shape of tool were studied. The tools with D-shape and square shape in cross section were tested for machining micro grooves and 3D structures.

  • PDF

SOH Estimation Method of Lithium Polymer Batteries Using OCV (리튬폴리머 배터리(LiPB)의 OCV를 이용한 배터리 SOH 추정 방법)

  • Noh, Dong-Yoon;Hwang, In-Sung;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.269-270
    • /
    • 2010
  • 본 논문은 리튬 폴리머 배터리(LiPB)의 OCV(Open Circuit Voltage;개방전압)를 이용한 배터리 SOH(State Of Health;잔존수명) 추정하는 방법의 제안이다. 종래에는 배터리 수명은 제조회사에서 지정된 시간이나 충방전 횟수를 기초로 수명을 결정하였다. 하지만 배터리의 온도, 충전방법, 전류변화 및 DOD(Depth of Discharge;방전심도) 정도에 따라 배터리 수명은 유동적이다. 따라서 배터리가 노후됨에 따라 OCV가 변한다는 원리를 이용하여 임피던스 분석을 통해서 SOH, 즉 배터리 잔존수명을 추정하는 기술을 제안하였다.

  • PDF

Detectability and Sizing Ability of Rotating Pancake Coil Technique for Cracks in Steam Generator Tubes

  • Y. M. Cheong;K. W. Kang;Lee, Y. S.;T. E. Chung
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.377-385
    • /
    • 1998
  • Many nuclear power plants have experienced unscheduled shutdown due to the leakage of steam generator tubes. The leakages are normally due to the crack, possibly stress corrosion cracking (SCC) near the tube expansion at the top of tubesheet or at the tangential point of the row-1 U-bend region. The conventional eddy current technique, which makes use of a differential bobbin coil, has been found to be inadequate for the early detection of SCC. During the in-service inspection, therefore, it is a general practice that the rotating pancake coil (RPC) is used for detecting the cracks. Even in using RPC, however, it is difficult to determine the depth of the cracks quantitatively. This paper attempts to determine the detectability and sizing ability of RPC technique for axial or circumferential cracks at the tube expansion region. The simulated cracks with various dimensions were fabricated by electro-discharge machining (EDM) method. Experimental results are discussed with theoretical calculations.

  • PDF

The Method of Battery Lifetime Optimization for V2G System considering Load Leveling (부하평준화를 고려한 V2G 시스템의 배터리 수명 최적화 기법)

  • Shin, Chang-Hyun;Kim, Do-Yun;Won, Il-Kuen;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.538-539
    • /
    • 2014
  • The development of smart grid technologies will enable enhanced utilization of electric vehicles(EV) as portable energy storage devices which can provide power system-wide. Because significant increase of EV in the near future, V2G(Vehicle-to-Grid) system will soon become a reality. This paper presents the optimal method of a battery lifetime depending on depth of discharge(DOD) considering load leveling.

  • PDF

Impact of Parameters of Nonlinear Breach Progression Curve on Outflow Rate (저수지 붕괴함수의 매개변수 결정이 유량과 침수범위에 미치는 영향)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.211-217
    • /
    • 2019
  • A Numerical modeling approach is usually applied to reproduce the physical phenomena of a fill dam-break. The accuracy of the dam-break model depends on the physical structure that defines input variables such as the storage volume, breach formation and progress, and the parameters of the model, which are subjective as they are prescribed by users. In this study, a sensitivity analysis was performed for the nonlinear breach progression curve that was already developed, which includes four parameters. The study focuses on the two of the parameters which control the breach forming time and peak discharge. The model is coupled with a two-dimensional flood simulation model (FLO-2D) to examine flood coverage and depth. It is generally observed that the parameter ${\beta}$ controls only the breach forming time, the parameter ${\gamma}$ is particularly sensitive to the peak flow.

Optimal Flood Control System for Irrigation Reservoir (관개저수지의 최적 홍수관리방안)

  • 문종필;민진우;김영식;박승기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.311-317
    • /
    • 1998
  • Recently irrigation reservoir has been developed to perform multipurpose function. To get a maximum effect it requires to establish optimal management system for irrigation reservoir in drought and flood season. Especially we dealt with optimal flood control system for irrigation reservoir in this study. This system consists of real-time rainfall data via online system, real-time flood forecasted by SCS method in hourly basis, storage volume by water balance equation, optimal releasing discharge from the gate, the water level in right downstream, and calculation of innundated area, depth, and time using GIS, and amount of flood damages. If we consider the relation of these sub module reasonably, we can reach the optimal flood control to minimize flood damage

  • PDF

Analysis on the breakdown characteristics of ESD-protection NMOS transistors based on device simulations (소자 시뮬레이션을 이용한 ESD 보호용 NMOS 트랜지스터의 항복특성 분석)

  • 최진영;임주섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.37-47
    • /
    • 1997
  • Utilizing 2-dimensional device simulations incorporating lattic eheating models, we analyzed in detail the DC breakdown characterisics of NMOS trasistors with different structures, which are commonly used as ESD protection transistors. The mechanism leading to device failure resulting from electrostatic discharge was explained by analyzing the 1st and 2nd breakdown characteristics of LDD devices. Also a criteria for more robust designs of NMOS transistor structures against ESD was suggested by examining the characteristics changes with changes in structural parameters such as the LDD doping concentration, the drain junction depth, the distance between source/drain contacts, and the source junction area.

  • PDF

Microplasma-Jet Device for Bio-medical Application (바이오-메디컬 응용을 위한 마이크로 플라즈마 분사 소자)

  • Kim, Kang-Il;Hong, Yong-Cheol;Kim, Guen-Young;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2474-2479
    • /
    • 2009
  • This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.