Browse > Article

Microplasma-Jet Device for Bio-medical Application  

Kim, Kang-Il (아주대학교 전자공학과)
Hong, Yong-Cheol (국가 핵융합 연구소)
Kim, Guen-Young (아주대학교 전자공학과)
Yang, Sang-Sik (아주대학교 전자공학과)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.58, no.12, 2009 , pp. 2474-2479 More about this Journal
Abstract
This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.
Keywords
Atmospheric pressure; Low temperature; Plasma-jet; Micromachining technology; Bio medical application;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Kang-il Kim, Geunyoung Kim, Yong Cheol Hong, and Sang Sik Yang, 'Atmospheric Microplasma-Jet Device for Bio-Medical Application', 11th Korean MEMS Conf., p, 201, 2009
2 F. Pachen, 'Hohlkathoden-Effekt', Ann. Phys. - Berlin, Vol. 50, p. 901, 1916
3 W. A. Gambling and H. Edels, 'The properties of high-pressure steady-state discharges in hydrogen', Br. J. Appl. Phys., Vol. 7, p. 376, 1956   DOI   ScienceOn
4 E. E. Kunhardt, 'Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas', IEEE Trans. Plasma Sci., Vol. 28, p. 189, 2000   DOI   ScienceOn
5 E. Stoffels, A. J. M. Roks and L. E. Deelman, 'Delayed Effects of Cold Atmospheric Plasma on Vascular Cells', Plasma Process. Polym., Vol. 5, p. 599, 2008   DOI   ScienceOn
6 W. Pan, W Zhang, W. Ma, and C. Wu, 'Characteristics of Argon Laminar DC Plasma Jet at Atmospheric Pressure', Plasma Chem. Plasma Process. Vol. 22, p. 271, 2002   DOI   ScienceOn
7 S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman and G. Friedman, 'Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma', IEEE Trans. Plasma Sci., Vol. 35, p. 1559, 2007   DOI   ScienceOn
8 H. Y. Fan, 'The Transition from Glow Discharge to Arc', Phys. Rev., Vol. 55, p. 769, 1939   DOI
9 N. T. Zervas, and A. Kuwayama, 'Pathological characteristics of experimental thermal lesions', J. Neurosurg., Vol. 37, p. 418, 1972   DOI   PUBMED
10 G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A Gutsol, A. Brooks and G. Friedman, 'Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines', Plasma Chem. Plasma Process. Vol. 27, p. 163, 2007   DOI   ScienceOn
11 W. A. Gambling and H. Edels, 'The high-pressure glow discharge in air', Br. J. Appl. Phys., Vol. 5, p.36, 1954   DOI   ScienceOn