• Title/Summary/Keyword: Depth effect

Search Result 4,273, Processing Time 0.032 seconds

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

Evaluation of Leak Probability in Pipes using P-PIE Program (P-PIE 프로그램을 이용한 배관에서의 누설확률 평가)

  • Park, Jai Hak;Shin, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.1-8
    • /
    • 2017
  • P-PIE is a program developed to estimate failure probability of pipes and pressure vessels considering fatigue and stress corrosion crack growth. Using the program, crack growth simulation was performed with an initially existing crack in order to examine the effects of initial crack depth distribution on the leak probability of pipes. In the simulation stress corrosion crack growth was considered and several crack depth distribution models were used. From the results it was found that the initial crack depth distribution gives great effect on the leak probability of pipes. The log-normal distribution proposed by Khaleel and Simonen gives lower leak probability compared other exponential distribution models. The effects of the number and the quality of pre-service and in-service inspections on the leak probability were also examined and it was recognized that the number and the quality of pre-service and in-service inspections are also give great effect on the leak probability. In order to reduce the leak probability of pipes in plants it is very important to improve the quality of inspections. When in-service inspection is performed every 10 years and the quality of inspection is above the very good level, the leak probability shows nearly constant value after the first inspection for an initially existing crack.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Central angle effect on connection behavior of steel box beam-to-circular column

  • Hwang, Won-Sup;Kim, Young-Pil;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.531-547
    • /
    • 2009
  • This paper presents the experimental results on the strength behavior and failure modes of box beam-to-circular column connections in steel piers. Previous research introduced parameters such as joint central angles, extension of horizontal stiffeners, and use of equivalent web depth, which ignored strength behavior and failure modes of box beam-to-circular column connections. The use of equivalent web depth $d_2$ is not reasonable when central angle ${\alpha}$ is closer to $90^{\circ}$; therefore, a monotonic loading test has been performed for eight connection specimens. From the test, it is identified that the connection with the circular column is stronger than the connection with the box-sectioned substitution column. Also, the strength of the beam-to-column connections with horizontal stiffeners is higher than the one of the no column stiffeners. The concrete-filled effect of box beam-to-circular column connection is also investigated, and the experimental yield strength of the connection is compared with the theoretical one. Also, more a reasonable equivalent web depth is suggested. The failure modes of connection are clearly defined.

Heating Efficiency of the Underground Heat Exchanger by Different Pipe Materials (지열교환기의 배관자재에 따른 난방효율 분석)

  • 오인환;이준학;정우철
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1998
  • To use the earth heat for the livestock housing, an underground heat exchanger is developed and pipes are layed in the depth of 2.5m under the ground. The pipes have two different kinds of diameter (200mm, 100mm) and materials (PE, PVC). The results of heating effect in winter and spring are following. The temperature in different soil depth varies from 5$^{\circ}C$ by 1.5m depth, to 9$^{\circ}C$ by 3.5m. So it should be better to have the depth greater than 2.5m. The difference of air temperature between the inside and outside pipe was 9.9 Kelvin(K) with 200mm diameter and 13.4K with the 100mm diameter with the same material in winter. By the lower outside temperature from -7.2$^{\circ}C$, it could keep the air temperature above 6$^{\circ}C$ through the 100mm diameter pipe. The heating performance was 593 W with 200mm diameter, 118W with 100mm diameter (PE), and 115W with 100m diameter (PVC), respectively. As the outside temperature varies from -1.5$^{\circ}C$ to 18.6$^{\circ}C$ in early spring, the air temperature through the pipes show 4∼8$^{\circ}C$. While the difference between maximum and minimum outside temperature is 14K, the one through the pipes could be reduced by 2K. Pipes with small diameter can more reduce the difference than the pipe with larger diameter.

  • PDF

Study on Grinding Force and Ground Surface of Ferrite (페라이트의 연삭저항 및 연삭면 특성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Effect of Prior Structure on Torsional Fatigue Strength of Induction Surface Hardened Medium Carbon Steel (고주파 표면경화된 중탄소강의 비틀림 피로강도에 미치는 초기조직의 영향)

  • Kim, Heung-Jip;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • In order to evaluate the relation between prior structure and fatigue strength on a induction surface hardened medium carbon steel(SAE1050M) for automotive drive shafts, torsional fatigue test were conducted with various cases of different hardened depths and applied loads. Prior structures of the steel such as pearlite, fine pearlite and spheroidal pearlite were prepared by conventional nomalizing, tempering after quenching and spheroidized annealing, respectively. Maximum torsional fatigue strength can be obtained when the case depth is 18~25% diameter of the bar in each prior structure. The effect of case depth on the torsional fatigue strength was different depending on applied load to specimen, but the most good fatigue life was shown in the case of pearlitic structure when the case depth was 4.0~5.5mm(18~25% of bar diameter). Among three different prior structures, energy consumption, to obtain high strength or to get the same case depth, was the most saved in the case of pearlitic structure.

  • PDF

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films

  • Kim, Ki-Yeon;Choi, Hyeok-Cheol;You, Chun-Yeol;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.97-101
    • /
    • 2008
  • We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.

A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.231-257
    • /
    • 2015
  • This paper discusses the spatial variability of the carbonation depth caused by the mesoscopic structure of the concrete and the influence of the spatial variability on the thickness of the concrete cover. To conduct the research, a method to generate the random aggregate structure (RAS) based on polygonal particles and a simplified numerical model of the concrete carbonation at meso-scale are firstly developed. Based on the method and model, the effect of the aggregate properties including shape, content and gradation on the spatial variability of the carbonation depth is comprehensively studied. The results show that a larger degree of the spatial variability will be obtained by using (1) the aggregates with a larger aspect ratio; (2) a larger aggregate content; (3) the gradation which has more large particles. The proper sample size and model size used in the analysis are also studied. Finally, a case study is conducted to demonstrate the influence of the spatial variability of the carbonation depth on the proper thickness of the concrete cover. The research in this paper not only provides suggestions on how to decrease the spatial variability, but also proposes the method to consider the effect of the spatial variability in designing the thickness of the concrete cover.