• Title/Summary/Keyword: Depot Maintenance

Search Result 59, Processing Time 0.023 seconds

A Study on the Applying Improvement Method of Guide for efficient depot level maintenance (효율적인 창정비요소개발을 위한 지침 개선적용 연구)

  • Jeong, Inn-Sung;Kim, Hyeong-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.789-796
    • /
    • 2019
  • If the development of Integrated Logistics Support (ILS) for maintenance of the end step is conducted systematically and efficiently, the weapon system lifecycle can be postponed and the availability can be improved. DEFense CONdition (DEFCON) is maintained as perfect. Nevertheless, like its importance, the guide for maintaining the depot performance is applied differently for each weapon system. The errors that can result cause additional cost, etc. ILS development at depot level maintenance is different from full scale development. Therefore, this study distinguishes the management and deployment section for the development concept. An additional way to perform an efficient development of depot maintenance element when determining the depot maintenance period were presented. This study examined how the Reliability, Availability, Maintainability (RAM), Logistics Support Analysis (LSA), and ILS 11 elements intersect at the depot maintenance sources. An analytical study of concrete adoptable plans was performed. The systematic adoption of a development procedure can make it possible to calculate the adoptable development cost. In addition, it can be helpful for improving the quality level and practical use of work products.

A Case Study on the Cost Effectiveness Analysis of Depot Maintenance Using Simulation Model and Experimental Design (시뮬레이션 모형과 실험설계법을 활용한 창정비 비용대 효과 분석 사례)

  • Kim, Sung-Kon;Lee, Sang-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.23-34
    • /
    • 2017
  • This paper is to study the simulation model of depot maintenance system that analyzes logistics supportability such as component availability and cost of target equipment. A depot maintenance system could repair or maintain multiple components simultaneously. The key performance indicators of this system are component availability, repair cycle time, and maintenance cost. The simulation model is based on the engine maintenance process of army aviation depot. This study combines the NOLH(Nearly Orthogonal Latin Hypercube) experimental design method, to composes 33 scenarios, with a multiple regression analysis to find out major factors that influence on key performance indicators. This study is significant in providing a cost-effectiveness analysis on depot maintenance system that is capable of maintaining multiple components at the same time.

Evaluation of Train Overhaul Maintenance Capacity for Rolling Stock Depot Using Computer Simulation Method (시뮬레이션 기법을 활용한 열차 차량기지의 중정비 검수 용량 평가)

  • Jang, Seong-Young;Jeon, Byoung-Hack;Lee, Won-Young;Yoo, Jae-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.231-242
    • /
    • 2007
  • As railroad industry faces the new Renaissance era, effective and efficient maintenance methods for rolling stock operation are required with advanced railroad technology. All kinds of railroad systems such as high-speed long-distance train, metropolitan mass transit and light rail require systematic maintenance technology in order to maintain the safe railroad operation. Simulation models for regular operations of the example maintenance center are developed. In this study, standard maintenance procedures, layout, equipments, and number of workers of Siheung Metropolitan Railroad Maintenance Rolling Stock Depot are considered. The proposed simulation models are developed using simulation package ARENA. After simulation, four types of observations are analyzed. First, the bottleneck operation is identified. Second, the relationship between maintenance center size, number of workers and cycle time is analyzed. Third, the scheduling performances between PERT/CPM and Critical Chain Project Management(CCPM) are compared. Lastly, the simulation results according to worker's working coverage shows expanding the worker's coverage decreases the cycle time and increases throughput per train. However, workers are to be fully trained to do multiple skill work.

Repair methods for aging aircraft and application of composite patch repair (노후항공기의 보수 방법 및 복합재 패치보수의 응용)

  • 김위대;김종진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

A Study on the Introduction of Six Sigma Method to the Maintenence Division (정비 부문의 6시그마 도입에 관한연구)

  • Park, Jai-Hyo;Joo, Ho;Hwang, Tae-Su
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.10-15
    • /
    • 2010
  • 1996년 국내 6시그마 활동이 도입된 이후 제조업, 서비스업, 대기업, 중소기업, 공공기관등 모든 부문에서 활발히 추진되어 괄목할 만한 개선 성과를 이루었으나, 국방군수 분야인 정비분야에서는 그 활동이 지지부진 하였다. 이에 국방 군수 효율화 운동의 일환으로 2009년 육군종합정비창에서 시범적으로 실시한 6시그마 도입활동을 소개하고 보다 발전적인 방향을 모색함으로써 국방 군수경영 혁신에 기여 하고자 한다.

  • PDF

Simulation Analysis of the Train Overhaul Maintenance Capacity for Rolling Stock Depot (열차 차량기지의 중정비 검수 용량 시뮬레이션 분석)

  • Jeon, Byoung-Hack;Lee, Won-Young;Jang, Seong-Young;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1481-1498
    • /
    • 2007
  • As railroad industry face the new Renaissance era, effective and efficient maintenance methods for rolling stock operation are required with advanced railroad technology. All kinds of railroad systems such as high speed long distance train, metropolitan mass transit and light rail require systematic maintenance technology in order to maintain the safe railroad operation. Simulation models for detailed operations of the sample maintenance center are developed. In this study, standard maintenance procedures, layout, equipments and number of workers of Siheung Metropolitan Railroad Maintenance Rolling Stock Depot are considered. The proposed simulation models are developed using simulation package ARENA. Three simulation analysis using the developed simulation model are done. First, the bottleneck operation is identified. Second, the relationship between maintenance center size, number of workers and cycle time is analyzed. Lastly, the scheduling performances between PERT/CPM and Critical Chain Project Management(CCPM) are compared.

  • PDF

Research on RAM-C-based Cost Estimation Methods for the Supply of Military Depot Maintenance PBL Project (군직 창정비 수리부속 보급 PBL 사업을 위한 RAM-C 기반 비용 예측 방안 연구)

  • Junho Park;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.855-866
    • /
    • 2023
  • With the rapid advancement and sophistication of defense weapon systems, the government, military, and the defense industry have conducted various innovative attempts to improve the efficiency of post-logistics support(PLS). The Ministry of Defense has mandated RAM-C(Reliability, Availability, and Maintainability-Cost) analysis as a requirement according to revised Total Life Cycle System Management Code of Practice in May 2022. Especially, for the project budget forecast of new PBL(Performance Based Logistics) business contacts, RAM-C is recognized as an obligatory factor. However, relevant entities have not officially provided guidelines or manuals for RAM-C analysis, and each defense contractor conducts RAM-C analysis with different standards and methods to win PBL-related business contract. Hence, this study aims to contribute to the generalization of the analysis procedure by presenting a cost analysis case based on RAM-C for the supply of military depot maintenance PBL project. This study presents formulas and procedures to determine requirements of military depot maintenance PBL project for repair parts supply. Moreover, a sensitivity analysis was conducted to find the optimal cost/utilization ratio. During the process, a correlation was found between supply delay and total cost of ownership as well as between cost variability and utilization rate. The analysis results are expected to provide an important basis for the conceptualization of the cost analysis for the supply of military depot maintenance PBL project and are capable of proposing the optimal utilization rate in relation to cost.

Planned Depot Maintenance Interval Decision for Unmanned Aerial Vehicle through Reliability and Maintainability Based Simulation and Operating & Support Cost Analysis (신뢰도 및 정비도 기반 시뮬레이션과 운영유지 비용분석을 통한 무인항공기의 계획창정비 주기결정)

  • Sang Yeob Lee;Jun Hyun Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2023
  • This research sought to determine the optimal cycle of Planned Depot Maintenance (PDM) for Unmanned Aerial Vehicle (UAV), and PDM through Reliability and Maintainability-based simulation and Operating and Support (O&S) cost analysis using Reliability and Maintainability analysis results. The effectiveness of the PDM was verified economically, and the optimal PDM interval that balances UAV effective operations and sustaining engineering costs was presented.

A Study on Disposal Method of Non-Point Pollutant of the Rolling Stock Depot (철도 차량기지내 비점오염물 처리방안 연구)

  • Jung, Jae-Hyoung;Shin, Min-Ho;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2910-2916
    • /
    • 2011
  • Environmental conservation is becoming the major conversation topic in the 21st century, the era of environment. In the Law for the Preservation of Water Quality, article 53 states "A business unit which is doing business causing pollution caused by non-point pollutant or builds waste water discharge facilities, should report the installation of the non-point pollutant and install the required pollution control facilities". Environmental pollution caused by oil leaks during operation or maintenance has been found in the railway sector. Especially, rolling stock depot is most likely to be affected by environmental pollution. Therefore, in this paper We have investigated non-point pollutant in the rolling stock depot area and have studied adequate disposal method to minimize the effect of the non-point pollutant, hoping to supply the preliminary data for building an environment-friendly rolling stock depot.

  • PDF

Material Requirements Planning for Military Maintenance Depot (군 정비창 자재소요계획)

  • Kim, Heung Seob;Kim, Pansoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.24-34
    • /
    • 2014
  • In order to manage essential parts that are required for the repairable parts services performed at the military maintenance depots, the United States Air Force developed the Repairability Forecasting Model (RFM). In the RFM, if the requirements of the parts are assumed to follow the normal probability distribution after applying means from the past data to the replacement rate and lead times, the chance of the AWP (Awaiting Parts) occurring is 50%. In this study, to counter the uncertainties of requirements and lead times from the RFM, the safety level concept is considered. To obtain the safety level for requirements, the binomial probability distribution is applied, while the safety level for lead time is obtained by applying the normal probability distribution. After adding this concept, the improved RFM is renamed as the ARFM (Advanced RFM), and by conducting the numerical stimulation, the effectiveness of the ARFM, minimizing the occurrence of the AWP, is shown by increasing the efficiency of the maintenance process and the operating rate of the weapon system.