• Title/Summary/Keyword: Deposition system

Search Result 1,616, Processing Time 0.031 seconds

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells (고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성)

  • Kim, Sungheon;Kim, Taeyong;Jeong, Sungjin;Cha, Yewon;Kim, Hongrae;Park, Somin;Ju, Minkyu;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

A study on copper thin film growth by chemical vapor deposition onto silicon substrates (실리콘 기판 위에 화학적 방법으로 증착된 구리 박막의 특성 연구)

  • 조남인;박동일;김창교;김용석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.318-326
    • /
    • 1996
  • This study is to investigate a chemical vapor deposition technique of copper film which is expected to be more useful as metallizations of microcircuit fabrication. An experimental equipment was designed and set-up for this study, and a Cu-precursor used that is a metal-organic compound, named (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper). Base pressure of the experimental system is in $10^{-6}$ Torr, and the chamber pressure and the substrate temperature can be controlled in the system. Before the deposition of copper thin film, tungsten or titanium nitride film was deposited onto the silicon wafer. Helium has been used as carrier gas to control the deposition rate. As a result, deposition rate was measured as $1,800\;{\AA}/min$ at $220^{\circ}C$ which is higher than the results of previous studies, and the average surface roughness was measured as about $200\;{\AA}$. A deposition selectivity was observed between W or TiN and $SiO_{2}$ substrates below $250^{\circ}C$, and optimum results are observed at $180^{\circ}C$ of substrate temperature and 0.8 Torr of chamber pressure.

  • PDF

Performance characteristics of the Coil Deposition Type Heat Pump using Geothermal Energy (지열을 이용한 코일 침적형 히트펌프의 성능 특성)

  • Oh, Hoo-Kyu;Lee, Dong-Gun;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.437-444
    • /
    • 2012
  • This paper describes the experimental characteristics on cooling and heating performance of the coil deposition type heat pump using geothermal energy to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling degree, evaporation and condensation temperature in the coil deposition type heat pump using geothermal energy. The main results are summarized as follows : As the evaporation temperature and subcooling degree of the coil deposition type heat pump using geothermal energy increases, and the condensation temperature decreases, the COP of this system increases. The subcooling degree, evaporation and condensation temperature of the coil deposition type heat pump have an effect on cooling and heating COP of this heat pump. Therefore, it is a necessary to determine the optimum operation conditions for the highest COP of this heat pump presented in this study.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

The Effects of Deposition Variables on the Chemical Vapor Deposition of SnO2 (증착변수들이 SnO2 화학증착에 미치는 영향에 관한 연구)

  • 김광호;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.543-552
    • /
    • 1987
  • The effects of deposition variables on SnO2 CVD were investigated for SnCl4+O2 reaction at 300∼700$^{\circ}C$, Psncl4=1${\times}$10-5∼1${\times}$10-3 atm, and Po2=5${\times}$10-4∼1 atm. A thermodynamic equilibrium study on Sn-Cl-O system has been performed with the computer calculation. The calculation indicates that major species participating the reaction in SnCl4 and not intermediate species, SnCl2. Good uniformity of the film thickness was obtained at the flow rate of 11cm/sec, which resulted from the stable gas flow in our cold wall reactor. The experimental results showed that apparent activation energy of the deposition was about 13.5Kcal/mole below the temperature of 500$^{\circ}C$ and the deposition mechanism was controlled by surface reation. The behavior of deposition rate on the reactant partial pressures could be explained with the Langmuri-Hinshelwood mechanism. X-ray study demonstrated that SnO2 film deposited at temperatures above 400$^{\circ}C$ were polycrystalline with tetragonal rutile structure and grew with (211) and (301) preferred orientations.

  • PDF

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

The Effect of Deposition Rate on In-Situ Intrinsic Stress Behavior in Cu and Ag Thin Films (증착 속도 변화에 따른 구리와 은 박막의 실시간 고유응력 거동)

  • Ryu, Sang;Lee, Kyungchun;Ki, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.283-288
    • /
    • 2008
  • We observed the in-situ stress behavior of Cu and Ag thin films during deposition using a thermal evaporation method. Multi-beam curvature measurement system was used to monitor the evolution of in-situ stress in Cu and Ag thin films on 100 Si(100) substrates. The measured curvature was converted to film stress using Stoney formula. To investigate the effects of the deposition rates on the stress evolution in Cu and Ag thin films, Cu and Ag films were deposited at rates ranging from 0.1 to $3.0{\AA}/s$ for Cu and from 0.5 to $4.0{\AA}/s$ for Ag. Both Cu and Ag films showed a unique three stress stages, such as 'initial compressive', 'a tensile maximum' and followed by 'incremental compressive' stress. For both Cu and Ag films, there is no remarkable effect of deposition rate on the thickness and average stress at the tensile maximum. There is, however, a definite decrease in the incremental compressive stress with increasing deposition rate.