The Effect of Deposition Rate on In-Situ Intrinsic Stress Behavior in Cu and Ag Thin Films

증착 속도 변화에 따른 구리와 은 박막의 실시간 고유응력 거동

  • Ryu, Sang (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Kyungchun (Department of Material Science & Engineering, Chonnam National University) ;
  • Ki, Youngman (Department of Material Science & Engineering, Chonnam National University)
  • 류상 (전남대학교 신소재공학부) ;
  • 조무현 (전남대학교 신소재공학부) ;
  • 김영만 (전남대학교 신소재공학부)
  • Received : 2007.07.11
  • Published : 2008.05.22

Abstract

We observed the in-situ stress behavior of Cu and Ag thin films during deposition using a thermal evaporation method. Multi-beam curvature measurement system was used to monitor the evolution of in-situ stress in Cu and Ag thin films on 100 Si(100) substrates. The measured curvature was converted to film stress using Stoney formula. To investigate the effects of the deposition rates on the stress evolution in Cu and Ag thin films, Cu and Ag films were deposited at rates ranging from 0.1 to $3.0{\AA}/s$ for Cu and from 0.5 to $4.0{\AA}/s$ for Ag. Both Cu and Ag films showed a unique three stress stages, such as 'initial compressive', 'a tensile maximum' and followed by 'incremental compressive' stress. For both Cu and Ag films, there is no remarkable effect of deposition rate on the thickness and average stress at the tensile maximum. There is, however, a definite decrease in the incremental compressive stress with increasing deposition rate.

Keywords

Acknowledgement

Supported by : 한국산업기술재단

References

  1. J. H. Jeong, Y. J. Baik, H. J. Kim and D. Kwon, J. Kor. Inst. Met. & Mater. 39, 26 (2002)
  2. L. Karlsson, L. Hultman and J. E. Sundgren, Thin Solid Films 371, 167 (2000) https://doi.org/10.1016/S0040-6090(00)00996-2
  3. E. Uhlmann and K. Klein, Surf. Coatings Technol. 131, 448 (2000) https://doi.org/10.1016/S0257-8972(00)00837-9
  4. R. Abermann, R. Kramer and J. Mser, Thin Solid Films 52, 215 (1978) https://doi.org/10.1016/0040-6090(78)90140-2
  5. A. L. Shull and F. Spaepen, J. Appl. Phys. 80, 6243 (1996) https://doi.org/10.1063/1.363701
  6. M. Laugier, Vacuum 31, 155 (1981) https://doi.org/10.1016/0042-207X(81)90007-5
  7. R. C. Cammarata, T. M. Trimble and D. J. Srolovitz, J. Mater. Res. 15, 246 (2000)
  8. F. Spaepen, Acta Mater. 48, 31 (2000) https://doi.org/10.1016/S1359-6454(99)00286-4
  9. C. Friesen and C. V. Thompson, Phys. Rev. Lett. 89, 126103 (2002) https://doi.org/10.1103/PhysRevLett.89.126103
  10. E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro and S. J. Hearne, Phys. Rev. Lett. 88, 156103 (2003)
  11. K. Kinosita, K. Maki, K. Nakamizo and K. Takeuchi, Jpn. J. Appl. Phys. 6, 42 (1967) https://doi.org/10.1143/JJAP.6.42
  12. R. Abermann, Vacuum 41, 1279 (1990) https://doi.org/10.1016/0042-207X(90)93933-A
  13. R. Abermann, R. Koch and R. Kramer, Thin Solid Films 58, 365 (1979) https://doi.org/10.1016/0040-6090(79)90272-4
  14. M. F. Doerner and W. D. Nix, CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988) https://doi.org/10.1080/10408438808243734
  15. H. Windischmann, CRC Crit. Rev. Solid State Mater. Sci. 17, 547 (1992) https://doi.org/10.1080/10408439208244586
  16. S. C. Seel, C. V. Thompson, S. J. Hearne and J. A. Floro, J. Appl. Phys. 88, 7079 (2000) https://doi.org/10.1063/1.1325379
  17. R. Abermann and H. P. Martinz, Thin Solid Films 115, 185 (1984) https://doi.org/10.1016/0040-6090(84)90179-2
  18. R. Koch, H. Leonhard and R. Abermann, Thin Solid Films 89, 117 (1982) https://doi.org/10.1016/0040-6090(82)90436-9
  19. H. P. Martinz and R. Abermann, Thin Solid Films 89, 133 (1982) https://doi.org/10.1016/0040-6090(82)90440-0
  20. R. Abermann and R. Koch, Thin Solid Flms 142, 65 (1986) https://doi.org/10.1016/0040-6090(86)90303-2
  21. R. Abermann, Thin Solid Films 186, 233 (1990) https://doi.org/10.1016/0040-6090(90)90145-4
  22. G. Thurner and R. Avermann, Thin Solid Films 192, 277 (1990) https://doi.org/10.1016/0040-6090(90)90072-L
  23. D. Winau, R. Koch and K. H. Rieder, Appl. Phys. Lett. 59, 1072 (1991) https://doi.org/10.1063/1.106348
  24. C. Friesen, S. C. Seel and C. V. Thompson, J. Appl. Phys. 95, 1011 (2004) https://doi.org/10.1063/1.1637728
  25. C. V. Thompson, J. Mater. Res. 14, 3164 (1999) https://doi.org/10.1557/JMR.1999.0424
  26. J. K. Park, G. W. Ha and D. Y. Oh, J. Appl. Phys. 97, 116 (2005)
  27. A. L. Vecchio and F. Spaepen, J. Appl. Phys. 101, 063518 (2007) https://doi.org/10.1063/1.2712150
  28. C. V. Thompson and R. Carel, J. Mech. Phys. Solids 44, 657 (1996) https://doi.org/10.1016/0022-5096(96)00022-1
  29. L. B. Freund and E. Chason, J. Appl. Phys. 89, 4866 (2001) https://doi.org/10.1063/1.1359437
  30. C. V. Thompson and J. R, Llyod, MRS Bull. 18 (1993) https://doi.org/10.1016/0025-5408(83)90011-9