• Title/Summary/Keyword: Deposition reduction

Search Result 490, Processing Time 0.023 seconds

Analysis of Debris Flow Disaster Area according to Location Change of Check Dam using Kanako-2D (Kanako-2D를 이용한 사방댐 위치 변화에 따른 토석류 피해지 분석)

  • Kim, Young Hwan;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.128-134
    • /
    • 2018
  • With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.

Aerosol Incident Angle Dependence of Optical and Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법으로 성막한 Bi:YIG 막의 광학적/자기적특성에 미치는 에어로졸 입사각도의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) films were deposited with the aerosol deposition method and their magnetic and optical properties were investigated as a function of the aerosol incident angle. The optical transmittance of Bi:YIG increased about 80% with increasing the aerosol incident angle from 0 degree to 30 degree, due to decrease of the defects which were formed from agglutinations of the Bi:YIG particles inside and/or surface of the film. The coercive force also decreased largely with increasing the aerosol incident angle due to the reduction of the collision energy between the particles and the substrate and the decrease of the defects.

Structural and electrical characteristics of IZO thin films with deposition temperature (증착 온도에 따른 IZO 박막의 구조적 및 전기적 특성)

  • Jun, D.G.;Lee, Y.L.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this study, we have investigated the effect of the substrate temperature on the structural and the electrical characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering under various substrate temperature. The substrate temperature has been changed from room temperature to $400^{\circ}C$. Samples which were deposited under $250^{\circ}C$ show amorphous structure. The electrical resistivity of crystalline-IZO (c-IZO) film was higher than that of amorphous-IZO (a-IZO) film. And the electrical resistivity showed minimum value near $150^{\circ}C$ of deposition temperature. The OLED device was fabricated with different IZO substrates made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.

MIT characteristic of VO2 thin film deposited by ALD using vanadium oxytriisopropoxide precursor and H2O reactant

  • Shin, Changhee;Lee, Namgue;Choi, Hyeongsu;Park, Hyunwoo;Jung, Chanwon;Song, Seokhwi;Yuk, Hyunwoo;Kim, Youngjoon;Kim, Jong-Woo;Kim, Keunsik;Choi, Youngtae;Seo, Hyungtak;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.484-489
    • /
    • 2019
  • VO2 is an attractive candidate as a transition metal oxide switching material as a selection device for reduction of sneak-path current. We demonstrate deposition of nanoscale VO2 thin films via thermal atomic layer deposition (ALD) with H2O reactant. Using this method, we demonstrate VO2 thin films with high-quality characteristics, including crystallinity, reproducibility using X-ray diffraction, and X-ray photoelectron spectroscopy measurement. We also present a method that can increase uniformity and thin film quality by splitting the pulse cycle into two using scanning electron microscope measurement. We demonstrate an ON / OFF ratio of about 40, which is caused by metal insulator transition (MIT) of VO2 thin film. ALD-deposited VO2 films with high film uniformity can be applied to next-generation nonvolatile memory devices with high density due to their metal-insulator transition characteristic with high current density, fast switching speed, and high ON / OFF ratio.

Manufacturing of Fe-Mn-Al-C Based Low Mn Lightweight Steel Via Direct Energy Deposition (Direct energy deposition 공정을 이용한 Fe-Mn-Al-C계 저망간 경량철강 제조)

  • Ko, Kwang Kyu;Son, Han Sol;Jung, Cha Hee;Bae, Hyo Ju;Park, Eun Hye;Kim, Jung Gi;Choi, Hyunjoo;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.320-324
    • /
    • 2022
  • Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800 W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 ㎛ are observed.

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun;Ji Hyeon Hwang;Byung Joon Choi
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.283-290
    • /
    • 2024
  • The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance (CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가)

  • Park, Yong-Jin;Kim, Jae-Hyun;Lee, Kyubock;Lee, Seung-Mo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.135-141
    • /
    • 2020
  • Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.

Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt (CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가)

  • Hwang, Dong Wook;Lee, Jong Hyeon;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calcium-based alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.

Immobilization of Proteins on Silicon Surfaces Using Chemical and Electrochemical Reactions of Nitrobenzenediazonium Cations (나이트로벤젠다이아조늄 양이온의 화학 및 전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정)

  • Kim, Kyu-Won;Haque, Al-Monsur Jiaul;Kang, Hyeon-Ju
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.70-74
    • /
    • 2010
  • The immobilization of proteins on silicon surfaces using electrochemical reaction has been studied. Chemical deposition of nitrobenzendiazonium (NiBD) cations is employed to modify silicon surfaces. Electrochemical reduction of nitro-group to primary amine-group have been conducted on the modified surfaces to activate silicon surfaces for the protein immobilization. Attachment of gold nanoparticles was used to prove the reduction. The current method was applied to selective activation of a silicon nanowire and immobilize proteins on the selected nanowire. It has been demonstrated that the use of chemical and electrochemical reaction NiBD is efficient for the selective immobilization of proteins on silicon nanowire surfaces.