• Title/Summary/Keyword: Deposition distance

Search Result 273, Processing Time 0.031 seconds

On-line measurement and simulation of the in-core gamma energy deposition in the McMaster nuclear reactor

  • Alqahtani, Mohammed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.30-35
    • /
    • 2022
  • In a nuclear reactor, gamma radiation is the dominant energy deposition in non-fuel regions. Heat is generated upon gamma deposition and consequently affects the mechanical and thermal structure of the material. Therefore, the safety of samples should be carefully considered so that their integrity and quality can be retained. To evaluate relevant parameters, an in-core gamma thermometer (GT) was used to measure gamma heating (GH) throughout the operation of the McMaster nuclear reactor (MNR) at four irradiation sites. Additionally, a Monte Carlo reactor physics code (Serpent-2) was utilized to model the MNR with the GT located in the same irradiation sites used in the measurement to verify its predictions against measured GH. This research aids in the development of modeling, calculation, and prediction of the GH utilizing Serpent-2 as well as implementing a new GH measurement at the MNR core. After all uncertainties were quantified for both approaches, comparable GH profiles were observed between the measurements and calculations. In addition, the GH values found in the four sites represent a strong level of radiation based on the distance of the sample from the core. In this study, the maximum and minimum GH values were found at 0.32 ± 0.05 W/g and 0.15 ± 0.02 W/g, respectively, corresponding to 320 Sv/s and 150 Sv/s. These values are crucial to be considered whenever sample is planned to be irradiated inside the MNR core.

Fabrication of Disordered Subwavelength Structures on Curved Surfaces by Using a Thermal Dewetting Process

  • Lee, Jong Heon;Song, Young Min
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.172-177
    • /
    • 2015
  • We present disordered moth eye structures on curved surfaces fabricated by dry etching of thermally dewetted metal nanoparticles. This lithography-free fabrication allows the formation of subwavelength scale nanostructures on the strongly inclined surfaces such as ball lens as well as on the microlens arrays with low curvature. In particular, we found that the size and average distance of nanostructures are closely related to the inclined angle of the surface. Experimental results on oblique angle deposition of metal thin films followed by thermal dewetting also support these effects.

Experimental study on CIS thin film deposition via electrostatic spray technique (정전기 스프레이 기술을 이용한 CIS 박막코팅에 관한 실험적 연구)

  • Yoon, Hyun;Yoon, Sukgoo;Kim, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Electrostatic spray deposition is an innovative coating technique that produces fine, uniform, self-dispersive (due to the Coulombic repulsion), and highly wettable, atomized drops. Copper-indium salts are dissolved in an alcohol-based solvent, which is then electrostatically sprayed onto a moderately heated, molybdenum-coated substrate. Solvent flowrates range from 0.02 to 5 ml/hr under applied voltages of 1 to 20 kV yielding drop sizes around a few hundred nanometers. By comparing the scanning electron miscrscope images of coated samples, the substrate temperature, applied voltage, solvent flowrate, and nozzle-substrate distance are demonstrated to be the primary parameters controlling coating quality. Also, the most stable electrostatic spray mode that reliably produces uniform and fine drops is the cone-jet mode with a Taylor cone issuing from the nozzle.

  • PDF

C-axis Orientation and Growth Structure of AIN Thin Films on $SiO_2$/Si Substrates Deposited by Reactive RF Magnetron Sputtering

  • Joo, Han-Yong;Lee, Jae-Bin;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.257-262
    • /
    • 1997
  • Aluminum nitride(AIN) thin films were deposited on SiO$_2$/Si substrates by reactive sputtering for the application of SAW devices. The major deposition parameters such as pressure, nitrogen fraction, rf power, substrate distance were changed to find out the optimal condition for c-axis oriented thin films on an amorphous substrate. The effects of deposition parameters on the crystal structure, residual stress, and growth morphology of thin films were characterized by XRD, SEM, and TEM. The FWHM of (002) rocking curve of the films deposited at the proper condition was lower than 2.2$^{\circ}$(C=0.93$^{\circ}$). Cross-sectional TEM showed that self-aligned structure was developed just after slightly random growth at the initial stage. The frequency characteristics of test device fabricated from AIN thin films confirmed their piezoelectric property and applicability for SAW devices.

  • PDF

Wear Behaviors of Ceramics TIN, TIC and TICN with Arc Ion Plating

  • Oh, Seong-Mo;Rhee, Bong-Goo;Jeong, Bong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1904-1911
    • /
    • 2003
  • In order to determine the wear properties of AIP (Arc Ion Plating) deposition, wear process was evaluated by using a Falex test machine. Also, in order to determine the effects of coating material on the wear process, TiC, TiN, and TiCN coatings of thickness about 5 $\mu\textrm{m}$∼6 $\mu\textrm{m}$ coated by Arc ion plating deposition method were tested. The wear property was determined under a dry sliding condition as a function of the applied load, sliding distance, sliding velocity and temperature. The results show that when wear of the coating-layer occurred, specific wear amount increased with the wear rate. At initial state, the wear rate rapidly increased, but it gradually reduced as the velocity increased. Also, when raising the temperature, the wear rate increased in the order of TiCN, TiN and TiC due to the frictional heat.

Morphology Control of Ag-doped ZnO Nanowires by Hot-walled pulse Laser Deposition

  • Kim, Gyeong-Won;Song, Yong-Won;Kim, Sang-Sik;Lee, Sang-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.25-26
    • /
    • 2009
  • We design and demonstrate the controlled morphologies of Ag-dpped ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). p-type Ag-doping is ensuired by low temperature photoluminescence (PL) spectrum to find the AoX peak at 3.349 eV. Morphology of grown NWs are controlled by changing the kinetic energy and flux of the ablated particles with adjusting the target - substrate (T-S) distance. The analysis on the resultant NWs is presented.

  • PDF

Electrical Properties of Renewable Energy Carbon Film for Light Source Technology (광원 적용을 위한 신재생에너지 카본 박막의 전기적 특성)

  • Lee Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.558-560
    • /
    • 2005
  • The carbon film was deposited by the electrolysis of methanol solution. Carbon films have been grown on silicon substrates using the method of chemical process. From investigations of the Raman spectroscopy and the FTIR spectroscopy, the carbon film deposited by the electrolysis was identified the hydrogenated carbon film with the porous structure. The carbon film deposited by elctrolysis of methanol was identified as the hydrogenated carbon film with porous structure. Deposition parameters for the growth of the carbon films were current density, methanol liquid temperature. We electrical resistance and surface morphology of carbon films formed various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes is relatively wider. We found that the electrical resistance in the films independent of both current density and methanol liquid temperature. The temperature dependence of the electrical resistance in the low resistance carbon films is different from one obtained in graphite..

Properties of Carbon for Application of New Light Source Technology

  • Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.477-479
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis, methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

Deposition conditions of $YBa_{2}$$Cu_{3}$$O_{7-x}$ deposited by a MOCVD method for coated conductors (MOCVD 법에 의해 증착 된 coated conductor용 $YBa_{2}$$Cu_{3}$$O_{7-x}$의 증착조건)

  • 선종원;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.83-86
    • /
    • 2003
  • YBa$_2$Cu$_3$$O_{7-x}$ thin films for coated conductor application were deposited on a MgO single crystalline substrate by a metal organic chemical vapor deposition (MOCVD) system of a vertical type using a single liquid source. The film uniformity was enhanced by controlling the gas shower head structure, the distance between the shower head and substrate, and the rotation of the substrate. The source mole ratio of Y(thd)$_3$: Ba(thd)$_2$: Cu(thd)$_2$ was changed for obtaining stoichiometric film. The phase formation, crystal orientation, surface morphology and film composition were investigated with different source mole ratios, and the critical temperature (T$_{c}$) was measured.red.

  • PDF

Fabrication Technology of DLC for New Light Source (광원 적용을 위한 DLC합성)

  • Lee, Sang-Heon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1663-1664
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis, methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

  • PDF