• Title/Summary/Keyword: Deposition Hole

Search Result 216, Processing Time 0.029 seconds

Characterization of Zn diffusion in TnP Cy $Zn_3P_2$ thin film and rapid thermal annealing (RHP에서의 $Zn_3P_2$ 박막 및 RTA법에 의한 Zn 확산의 특성)

  • 우용득
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • Zn diffusions in InP have been studied by electrochemical capacitance voltage. The InP layer was grown by metal organic chemical vapor deposition, and $Zn_3P_2$ thin film was deposited on the epitaxial substrates. The samples annealed in a rapid thermal annealing. It is demonstrated that surface hole concentration as high as $1\times10^{19}\textrm{cm}^{-3}$ can be achieved. When the Zn diffusion was carried at $550^{\circ}C$ and 5-20 min., the diffusion depth of hole concentration moves from 1.51$\mu\textrm{m}$ to 3.23 $\mu\textrm{m}$, and the diffusion coeffcient of Zn is $5.4\times10^{-11}\textrm{cm}^2$/sec. After activation, the concentration is two orders higher than that of untreated sample at 0.30 $\mu\textrm{m}$ depth. As the annealing time is increase, the hole concentration remains almost constant, except deep depth. It means that excess Zn interstitials exist in the doped region is rapidly diffusion into the undoped region and convert into substitutional When the thickness of $SiO_2$ thin film is above 1,000$\AA$, the hole concentration becomes stable distribution.

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

Crystallographic Orientation Dependence Of Electrical Properties of Carbon-doped GaAs Grown by Low Pressure Metalorganic Chemical Vapor Deposition Using CBr4 (저압 MOCVD로 CBr4 가스를 사용하여 탄소 도핑된 GaAs 에피층의 결정학적 방향에 따른 전기적 성질의 의존성)

  • 손창식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.214-219
    • /
    • 2002
  • In order to elucidate the crystallographic orientation dependence of electrical properties of carbon (C)-doped GaAs epilayers, C incorporation into GaAs epilayers on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A has been performed by a low pressure metalorganic chemical vapor deposition using C tetrabromide ($CBt_4$) as a C source. The hole concentration of C-doped GaAs epilayers rapidly decreases with a hump at (311)A with increasing the offset angle. Although the growth temperature and the V/III ratio are varied, the crystallographic orientation dependence of hole concentration show a same trend. The above behaviors indicate that the bonding strength of As sites on a glowing surface plays an important role in the C incorporation into the high-index GaAs substrates.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Efficiency Improvement of OLEDs depending on the Hole-size of Crucible Boat (Crucible Boat의 홀 크기에 따른 유기발광소자의 효율 개선)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • In the device structure of ITO/tris(8-hydroxyquinoline) aluminum ($Alq_3$)/Al device, we investigated the efficiency improvement of organic light-emitting diodes (OLEDs) depending on the hole-size of crucible boat. The device was manufactured using a thermal evaporation under the base pressure of $5{\times}10^{-6}\;Torr$. The $Alq_3$ organics were evaporated to be 100 nm thick at a deposition rate of $1.5\AA/s$, and in order to investigate the optimal surface roughness of $Alq_3$, the $Alq_3$ was thermally evaporated to be 0.8 mm, 1.0 mm, and 1.5 mm as a hole-size of the boat, respectively. We found that luminance and external quantum efficiency are superior when the hole-size of the boat is 1.0 mm. The external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of ten compared to the devices made with the hole-size of non boat.

Effect of cold-spray deposition on deformation of aluminum alloy substrate (초음속 저온분사법에 의한 알루미늄 분말 적층에서 얇은 모재에 발생하는 변형에 대한 연구)

  • Lee Jae-Chul;Chun Doo-Man;Kim Sung-Geun;Ahn Sung-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.99-100
    • /
    • 2006
  • Cold gas dynamic spray or cold-spray is a deposition process, which causes deformation of a thin substrate. The deformation is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy. The effects or anisotropic coefficient or thermal expansion (CTE) or the deposited layer by cold-spray and residual stress were studied by experiments and finite element analysis. The Hole Drilling method was applied to measure residual stress in the cold-spray layer and substrate. The data obtained by the experiments were used for the analysis of substrate deformation. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Synthesis and Characterization of Crosslinked Hole Transporting Polymers for Organic Light Emitting Diodes

  • Jang, Do-Young;Lim, Youn-Hee;Kim, Joo-Hyun;Kim, Jang-Joo;Shin, Jung-Hyu;Yoon, Do-Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.235-235
    • /
    • 2006
  • Triphenylamine derivatives play important roles as hole transporting materials in organic light emitting devices. However, low molecular weight triphenylamine derivatives show low glass transition temperature and aggregation behavior, and the vapor deposition step of low molecular weight materials is incompatible with large area display fabrication. Conventional polymer PEDOT-PSS HTL has serious drawbacks such as the ITO anode corrosion, poor surface energy match with aromatic EMLs. To solve these problems, we introduced crosslinkable units to triphenylamine-based polymers to make insoluble HTL by thermal curing following spin-coating. Electrochemical and optical properties of the new hole transporting materials were investigated. In addition, the device characteristics obtained with new hole transporting polymers were investigated in details.

  • PDF

The Optimization of Semiconductor Processes for MMIC Fabrication - Si$_3$N$_4$ deposition, GaAs via-hole dry etching, Airbridge process (MMIC 제작을 위한 반도체 공정 조건들의 최적화 - Si$_3$N$_4$증착, GaAs via-hole건식식각, Airbridge공정)

  • 정진철;김상순;남형기;송종인
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.934-937
    • /
    • 1999
  • MMIC 제작을 위한 단일 반도체 공정으로써 PECVD를 이용한 Si₃N₄의 증착, RIE를 이용한 CaAs via-hole건식식각, 그리고 airbridge 공정조건을 위한 실험 및 분석 작업을 수행하였다. Si₃N₄의 증착 실험에서는 굴절률이 2인 조건을, GaAs via-hole 식각 실험에서는 최적화된 thru-via의 모양과 식각률을 갖는 조건을, airbridge 실험에서는 polyimide coating 및 건식 식각 조건과 금 도금 및 습식 식각의 최적 조건들을 찾아내었다.

  • PDF

Dielectric Properties of the Hole Injection Layer(AF) for OLEDs (OLED용 정공주입층(AF)의 유전특성)

  • Lee, Young-Hwan;Lee, Kang-Won;Shin, Jong-Yeol;Kim, Tae-Wan;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.409-410
    • /
    • 2008
  • We studied dielectric properties of Organic Light-emitting Diodes(OLEDs) depending on applied voltage of AF(Amorphous Polytetrafluoroethylene), material of hole injection layer in structure of ITO/hole injection layer (AF)/Al. AF is deposited 5 [nm] as deposition rate of 0.1~0.2 [$\AA$/s] in high vacuum of $5\times10^{-6}$ [Torr]. In result of these studies, we can know dielectric properties of OLEDs. The impedance decreases as the applied voltage increases and the Cole-Cole plots of devices are decreases as the applied voltage increases.

  • PDF