• 제목/요약/키워드: Depletion scheme

검색결과 39건 처리시간 0.022초

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

The impact of fuel depletion scheme within SCALE code on the criticality of spent fuel pool with RBMK fuel assemblies

  • Andrius Slavickas;Tadas Kaliatka;Raimondas Pabarcius;Sigitas Rimkevicius
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4731-4742
    • /
    • 2022
  • RBMK fuel assemblies differ from other LWR FA due to a specific arrangement of the fuel rods, the low enrichment, and the used burnable absorber - erbium. Therefore, there is a challenge to adapt modeling tools, developed for other LWR types, to solve RBMK problems. A set of 10 different depletion simulation schemes were tested to estimate the impact on reactivity and spent fuel composition of possible SCALE code options for the neutron transport modelling and the use of different nuclear data libraries. The simulations were performed using cross-section libraries based on both, VII.0 and VII.1, versions of ENDF/B nuclear data, and assuming continuous energy and multigroup simulation modes, standard and user-defined Dancoff factor values, and employing deterministic and Monte Carlo methods. The criticality analysis with burn-up credit was performed for the SFP loaded with RBMK-1500 FA. Spent fuel compositions were taken from each of 10 performed depletion simulations. The criticality of SFP is found to be overestimated by up to 0.08% in simulation cases using user-defined Dancoff factors comparing the results obtained using the continuous energy library (VII.1 version of ENDF/B nuclear data). It was shown that such discrepancy is determined by the higher U-235 and Pu-239 isotopes concentrations calculated.

Domain decomposition for GPU-Based continuous energy Monte Carlo power reactor calculation

  • Choi, Namjae;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2667-2677
    • /
    • 2020
  • A domain decomposition (DD) scheme for GPU-based Monte Carlo (MC) calculation which is essential for whole-core depletion is introduced within the framework of the modified history-based tracking algorithm. Since GPU-offloaded MC calculations suffer from limited memory capacity, employing DDMC is inevitable for the simulation of depleted cores which require large storage to save hundreds of newly generated isotopes. First, an automated domain decomposition algorithm named wheel clustering is devised such that each subdomain contains nearly the same number of fuel assemblies. Second, an innerouter iteration algorithm allowing overlapped computation and communication is introduced which enables boundary neutron transactions during the tracking of interior neutrons. Third, a bank update scheme which is to include the boundary sources in a way to be adequate to the peculiar data structures of the GPU-based neutron tracking algorithm is presented. The verification and demonstration of the DDMC method are done for 3D full-core problems: APR1400 fresh core and a mock-up depleted core. It is confirmed that the DDMC method performs comparably with the standard MC method, and that the domain decomposition scheme is essential to carry out full 3D MC depletion calculations with limited GPU memory capacities.

Real variance estimation in iDTMC-based depletion analysis

  • Inyup Kim;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4228-4237
    • /
    • 2023
  • The Improved Deterministic Truncation of Monte Carlo (iDTMC) is a powerful acceleration and variance reduction scheme in the Monte Carlo analysis. The concept of the iDTMC method and correlated sampling-based real variance estimation are briefly introduced. Moreover, the application of the iterative scheme to the correlated sampling is discussed. The iDTMC method is utilized in a 3-dimensional small modular reactor (SMR) model problem. The real variances of burnup-dependent criticality and power distribution are evaluated and compared with the ones obtained from 30 independent iDTMC calculations. The impact of the inactive cycles on the correlated sampling is also evaluated to investigate the consistency of the correlated sample scheme. In addition, numerical performances and sensitivity analysis on the real variance estimation are performed in view of the figure of merit of the iDTMC method. The numerical results show that the correlated sampling accurately estimates the real variances with high computational efficiencies.

전력소자를 위한 새로운 홈구조 터미네이션 (A New Trench Termination for Power Semiconductor Devices)

  • 민원기;박남천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1337-1339
    • /
    • 1998
  • The trench termination scheme is introduced for high voltage devices. The curvature of the depletion region at field limiting ring is critical factor to determine the breakdown voltage. The smooth curvature of the depletion junction alleviate the electric field crowding effect around this region. In the trench field limiting ring, the radius of the depletion region is smaller than conventional field limiting ring, but the distance between every trench is spaced small enough to punchthrough before initiation of local breakdown. The trench field limiting ring on silicon can ne formed by RIE followed by oxidation on side wall surface of the trench, and polysilicon filling. The combined termination of this trench floating field ring and field plate have been designed and analyzed. The breakdown simulation by 2-dimensional TCAD shows that the cylindrical junction breakdown voltage for substrate doping might be 99 percent of the ideal breakdwon voltage for substrate doping concentration of $3\times10^{14}cm^{-3}$ with about $100{\mu}m$ of lateral termination width.

  • PDF

무선 센서 네트워크에서 동적 여과를 위한 퍼지 기반 확률 조절 기법 (Probability Adjustment Scheme for the Dynamic Filtering in Wireless Sensor Networks Using Fuzzy Logic)

  • 한만호;이해영;조대호
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.159-162
    • /
    • 2008
  • Generally, sensor nodes can be easily compromised and seized by an adversary because sensor nodes are hostile environments after dissemination. An adversary may be various security attacks into the networks using compromised node. False data injection attack using compromised node, it may not only cause false alarms, but also the depletion of the severe amount of energy waste. Dynamic en-route scheme for Filtering False Data Injection (DEF) can detect and drop such forged report during the forwarding process. In this scheme, each forwarding nodes verify reports using a regular probability. In this paper, we propose verification probability adjustment scheme of forwarding nodes though a fuzzy rule-base system for the Dynamic en-route filtering scheme for Filtering False Data Injection in sensor networks. Verification probability determination of forwarding nodes use false traffic rate and distance form source to base station.

  • PDF

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Design of Low Power All-Optical Networks with Dynamic Lightpath Establishment

  • Hirata, Kouji;Ito, Kohei;Fukuchi, Yutaka;Muraguchi, Masahiro
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.551-558
    • /
    • 2016
  • In multifiber all-optical networks, optical amplifiers are used for amplifying multiple optical signals with different wavelengths in fibers. An optical amplifier operates when any of lightpaths passes through it. Therefore, it should simultaneously amplify as many lightpaths as possible for efficiently utilizing its power. This paper proposes a dynamic lightpath establishment scheme considering the use efficiency of the optical amplifiers and the depletion of the wavelength resources in multifiber all-optical networks. The proposed scheme provides a routing and wavelength assignment strategy that reduces both the power consumption of the optical amplifiers and the blocking probability of the lightpath establishment. Through simulation experiments, we demonstrate the effectiveness of the proposed scheme.

출력민감도 계수개념을 이용한 가연성 독붕봉이 출력분포에 미치는 영 향의 분석 (Analysis of Burnable Poison Effect on Power Distribution using Power Sensitivity Coefficient Concept)

  • Yi, Yu-Han;Oh, Soo-Youl;Seong, Seung-Hwan;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.19-26
    • /
    • 1988
  • 저누출 장전 모형은 새 연료를 안에서부터 넣는 in-out 형태를 취하여 격납 용기의 fluence를 줄이고 중성자 경제성을 높이고자 하는 것으로, 이 경우에는 노심내의 전체적인 중성자 경제성은 좋아지지만 노심 중앙부에서의 새연료의 과다 반응도 때문에 안전성 여유를 줄이게 되므로 많은 수의 가연성 독붕봉을 사용하여 첨두 인자를 조절해야만 한다. 본 논문에서는 가연성 독붕봉 연소에 따른 출력 변화를 섭동으로 취급하며, 이를 출력감도 계수(Power Sensitivity Coefficient)로 표시한다. 최적화된 가연성 독붕봉의 분포를 구하기 인하여 알고 있는 주기말상태로부터, 노심 내의 출력과 과다 반응도를 제어하면서 주기초로 추적해 나가는 역연소법(Reverse Depletion Method)의 도입에 대한 타당성을 출력 민감도 계수개념과 선형 계획법을 이용하여 원자력 7호기 제1주기에 응용하여 검증했으며, 가연성 독붕봉의 추정량과 실제량과의 차이는 최대 4.5%의 오차를 보였다.

  • PDF