• Title/Summary/Keyword: Dependence of Spectrum

Search Result 194, Processing Time 0.023 seconds

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Photocurrent properties for $CdGa_2Se_4$ single crystal thin film grown by using hot wall epitaxy(HWE) method (Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 광전류 연구)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$ prepared from horizontal electric furnace. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$, obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - $(7.721{\times}10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy$({\Delta}cr)$ and the spin-orbit splitting energy$({\Delta}so)$ for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11^-}$ exciton peaks.

  • PDF

Growth and photocurrent properties for the $AgInS_{2}$ epilayers by hot wall ep itaxy (Hot wall epitaxy 방법에 의한 $AgInS_{2}$ 박막의 성장과 광전류특성)

  • Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-96
    • /
    • 2002
  • A silver indium sulfide $(AgInS_{2})$ epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-ta-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$, and the spin orbit splitting, $\Delta_{so.}$ have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}(T)$, was determined.

  • PDF

Chronotype in Relation to Bipolarity, Suicidal Ideation, and Auditory Evoked Potentials in Patients with Major Depressive Disorder : Preliminary Study (주요우울증 환자에서 일주기 형태에 따른 양극성 경향, 자살 사고, 청각유발전위와의 관련성 : 예비 연구)

  • Park, Young-Min;Lee, Seung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • Objectives The current study investigated the putative relationship between chronotype and suicidality or bipolarity in patients with major depressive disorder (MDD). Method Nineteen outpatients who met the criteria for MDD according to the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders-text revision were recruited for the current study. The subjects were divided into two subgroups based on their Basic Language Morningness (BALM) scores (dichotomized according to the median BALM score). The Loudness Dependence of Auditory Evoked Potentials (LDAEP) was evaluated by measuring the auditory event-related potentials before beginning medication with serotonergic agents. In addition, K-Mood Disorder Questionaire (K-MDQ), Beck Scale for Suicidal Ideation (BSS), Beck Hopelessness Scale (BHS), Barratt Impulsiveness Scale (BIS) were applied. Results The K-MDQ, BSS, BHS, BIS score was higher for the eveningness group than for the morningness group. However, the LDAEP, Hamilton Depression Rating Scale, Hamilton Anxiety Scale scores did not differ significantly between them. There were negative correlations between the total BALM score and the total K-MDQ, BSS, and BHS scores (r=-0.64 and p=0.0033, r=-0.61 and p=0.0055, and r=-0.72 and p=0.00056, respectively). Conclusions Depressed patients with eveningness are more vulnerable to the suicidality than those with morningness. Eveningness is also associated with bipolarity.

Growth and photoluminescence properties of Er : Mg : LiNbO$_3$single crystal fibers by $\mu$-PD method ($\mu$-PD법에 의한 Er : Mg : LiNbO$_3$fiber 결정 성장 및 형광특성)

  • 양우석;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.389-393
    • /
    • 2000
  • High-quality $Er^{3+}$ doped Mg : $LiNbO_3$single crystal fibers were grown by a micro-pulling down ($\mu$-PD) method. Single crystal fibers were pulled down through the nozzle, at a pulling down rate of 0.5 mm/min and using a Pt crucible with a nozzle 1 mm in diameter in air atmosphere. Defects such as bubbles, cracks and inclusions were not detected in any of the grown crystals. The optical transmission of Er : Mg : $LiNbO_3$crystal was measured and the energy levels of $Er_2O_3$ ion could be calculated. The photoluminescence spectrum of crystal fibers showed an energy band emission with the strongest line corresponding to the $^4I_{3/2}{\to}^4I_{15/2}$transition. The concentration dependence of the entire wavelength region emission intensity upon excitation intensity measured emission intensity for the 3 mol% MgO doped fibers was larger than that for the 1, 5 mol% MgO doped fibers.

  • PDF

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Magnetic Properties of $ThMn_{12}-type$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$>$Ti_{1.2}Mo_{0.1}$ ($ThMn_{12}$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$의 미세구조 및 자기적 성질 연구)

  • 안성용;이승화;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • We have studied crystallographic and magnetic properties of $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ by Mossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ has pure a single phase, whereas $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha$-Fe, conformed with X-ray diffractometry and Mossbauer measurements. The $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ has a $ThMn_{12}-type$ tetragonal structure with $a_0=8.637{\AA}$ and $c_0=4.807{\AA}$. The Curie temperature ($T_c$) is 600 K from the result of Mossbauer measurement performed at various temperatures ranging from 13 to 800 K. Each spectrum of below $T_c$ is fitted with five subspectra of Fe sites in the structure ($8i_1, 8i_2, 8j_2, 8j_1, 8f$). The area fractions of the subspectra at room temperature are 12.3%, 14.0%, 21.0% 11.8%, 40.9%, respectively. Magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, an magnetic moment observed at about 160 K in $NdFe_ {10.7} Ti_{1.2}Mo_{0.1}$ are attributed to spin reorientations. The average hyperfine field of the $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.34(T/T_C)^{3/2}-0.14(T/T_C)^{5/2}$ for $T/T_c<0.7$, indicative of spin wave excitation. The Debye temperatures of $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ is found to be Θ=340$\pm$5 K.

  • PDF

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Photocurrent Study on the Splitting of the Valence Band and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon;Park, Jin-Sun;Lee, Bong-Ju;Jeong, Jun-Woo;Bang, Jin-Ju;Kim, Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.157-167
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.