DOI QR코드

DOI QR Code

Photocurrent Study on the Splitting of the Valence Band and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy

Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Park, Chang-Sun (Department of Metallurgical and Material Science, Chosun University) ;
  • Hong, Kwang-Joon (Department of Physics, Chosun University) ;
  • Park, Jin-Sun (Department of Metallurgical and Material Science, Chosun University) ;
  • Lee, Bong-Ju (Department of Physics, Chosun University) ;
  • Jeong, Jun-Woo (Department of Physics, Chosun University) ;
  • Bang, Jin-Ju (Department of Physics, Chosun University) ;
  • Kim, Hyun (Department of Physics, Chosun University)
  • 박창선 (조선대학교 금속재료공학부) ;
  • 홍광준 (조선대학교 물리학과) ;
  • 박진성 (조선대학교 금속재료공학부) ;
  • 이봉주 (조선대학교 물리학과) ;
  • 정준우 (조선대학교 물리학과) ;
  • 방진주 (조선대학교 물리학과) ;
  • 김현 (조선대학교 물리학과)
  • Published : 2004.03.31

Abstract

A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.

Keywords

References

  1. L. Roa, J.C. Chervin, A. Chevy, M. Davila, P. grima, and J. Gonzalez, 'Raman Scattering in Novel CuAISe2 Crystals', Phys. Stat. Sol., vol. 198, pp. 99103, 1996 https://doi.org/10.1002/pssb.2221980114
  2. Nobuyuki Yamamoto, 'Photoacoustic Spectra of CuAISe$_2$',Jpns. J. of Applied Phy., vol. 15, pp. 1909-1913, 1976 https://doi.org/10.1143/JJAP.15.1909
  3. V.A. Savchuk, B.V. Korzoun, and D.l. Zhigunov, 'The of Band-gapanomaly in ABC2Chalcopyrite Semiconductors', J. Crys. Growth, vol. 158, pp. 385-391. 1996 https://doi.org/10.1016/0022-0248(95)00439-4
  4. A.M. Andriesh, N.N. Syrbu, M.S. IoYll, and V.E. Tazlavan, 'Luminescence and Impurity States in CuAISe2', Crystal, Phys. Stat. Sol., vol. 187, pp. 8388, 1995 https://doi.org/10.1002/pssb.2221870107
  5. L. Roa, J.C. Chervin, J.P. Itie, A. Polian, M. Gauthier, and A. Chevy, 'Analysis of the Electrical and Luminescent Properties of CuAISe$_2$', Phys. Stat. Sol., vol. 211, pp. 455-459, 1999 https://doi.org/10.1002/(SICI)1521-3951(199901)211:1<455::AID-PSSB455>3.0.CO;2-O
  6. Moon Seog Jin, 'Polycrystalline CuAISe2 Photoelectrochemical Cells', J. Phys. Chem. Solids, vol. 57, pp. 1359-1364, 1996 https://doi.org/10.1016/0022-3697(96)00027-3
  7. S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, 'Growth by Directional Freezing of CuAISeTEX>$_2$ and Diffused Homojunctions in Bulk Material', Appl. Phys. Lett., vol. 62, pp. 3306-3309, 1993 https://doi.org/10.1063/1.109054
  8. Y. Harada, M. Uchida, and S. Matsumoto, 'X-ray Photoelectron and Aun Spectroscopic Analysis of Surface Treatments and Electrochemical Decomposition of CuAISe2 Photo Electrodes', J. Appl. Phys., vol. 77, pp. 1225-1229, 1995 https://doi.org/10.1063/1.358990
  9. M.l. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, 'The Optical Properties of CuAISe2 Crystal Grown by the Sublimation Method', J. Appl. Phys., vol. 88, pp. 1923-1927, 2000 https://doi.org/10.1063/1.1305858
  10. K.J. Hong and S.H. You, 'The Characterization of AglnSe$_2$ Epilayers Grown by Hot Wall Epitaxy', J. Appl. Phys., vol. 90, pp. 3894-3898, 2001 https://doi.org/10.1063/1.1405132
  11. J.T. Calow, D.L. Kirr, and SJ.T. Owen, 'The Optical Properties of CuAISe$_2$ Thin Films Grown by the Sublimation Method', Thin Soild Films, vol. 9, pp. 409-412, 1970
  12. J.E. Genthe and R.E. Aldrich, 'The Optical Properties of CuAISe$_2$ Thin Films', Thin Solid Films, vol. 8, pp. 149-153, 1971 https://doi.org/10.1016/0040-6090(71)90007-1
  13. B.D. Cullity, 'Elements of X-ray Diffractions', Caddson-Wesley, chap. II, 1985
  14. Ravhi S. Kummer and A. Sekar, 'Growth of Large CuAISe2 Single Crystals', J. Alloys and Compounds, vol. 312, pp. 49, 2000