• Title/Summary/Keyword: Denture curing methods

Search Result 47, Processing Time 0.025 seconds

Comparison between mechanical properties and biocompatibility of experimental 3D printing denture resins according to photoinitiators (광개시제에 따른 실험용 3D 프린팅 의치상 레진의 기계적 성질과 생체적합성 비교)

  • Park, Da Ryeong;Son, Ju lee
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.355-361
    • /
    • 2020
  • Purpose: In this study, we added two kinds of photoinitiators (CQ and TPO) to prepare two kinds of denture base resins (Bis-GMA series and UDMA series) for three-dimensional (3D) printing to compare and analyze their mechanical and biological properties and to find the optimal composition. Methods: Control specimens were made using the mold made of polyvinyl siloxane of the same size. Light curing was performed twice for 20 seconds on both the upper and lower surfaces with LED (light emitting diode) light-curing unit (n=10). Experimental 3D printing dental resins were prepared, to which two photoinitiators were added. Digital light processing type 3D printer (EMBER, Autodesk, CA, USA) was used for 3D printing. The specimen size was 64 mm×10 mm×3.3 mm according to ISO 20795-1. The final specimens were tested for flexural strength and flexural modulus, and MTT test was performed. Furthermore, one-way analysis of variance was performed, and the post-test was analyzed by Duncan's test at α=0.05. Results: The flexural strength of both Bis-GMA+CQ (97.12±6.47 MPa) and UDMA+TPO (97.40±3.75 MPa) was significantly higher (p<0.05) in the experimental group. The flexural modulus in the experimental group of UDMA+TPO (2.56±0.06 GPa) was the highest (p<0.05). MTT test revealed that all the experimental groups showed more than 70% cell activity. Conclusion: The composition of UDMA+TPO showed excellent results in flexural strength, flexural modulus, and biocompatibility.

Linear measurement evaluation according to UV-type ultrasonic cleaning of artificial teeth for temporary dentures manufactured using a light-curing type printer produced by a DLP printer (광중합형 프린터로 제작한 임시 의치용 인공치아의 UV형 초음파 세척에 따른 선형측정 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Purpose: This study compares the deformation of traditional resin dentures to resin dentures printed with digital light processing (DLP). Methods: Eleven edentulous research models were developed. Ten of them were made with traditional resin dentures. The remaining one was prepared for scanning and 3D (three-dimensional) printing. Ten traditional resin dentures were made, with the remaining artificial teeth created using 3D software and a DLP printer. Traditional resin dentures, 3D printed resin denture artificial teeth, and a denture base with artificial teeth were all cleaned simultaneously in an ultrasonic cleaner for 3 minutes. Three groups were assigned four artificial tooth measurement points, which were then measured with digital calipers. The measured data was analyzed using descriptive statistics. The significance test was conducted using a nonparametric test Kruskal-Wallis test due to the small number of specimens (α=0.05). Results: The traditional resin dentures had the lowest strain rate at -0.04%, while the group that manufactured only artificial teeth had the highest strain rate at -0.09%. However, no statistically significant difference was observed between the 3 groups (p>0.05). Conclusion: During ultraviolet-type ultrasonic cleaning, traditional resin dentures (TD group) and denture base with artificial teeth made of DLP (DD group) demonstrated stable durability, whereas the artificial teeth made of DLP (AD group) with only artificial teeth did not show a good deformation rate.

Complete denture artificial teeth arrangement deformation in wax denture after festooning: deformation over time (총의치의 납의치 상에서 치은 형성 시행 후에 나타나는 시간에 따른 인공 치아 이 동에 대한 평가)

  • Lee, Sea-Han;Kwak, Young-Hun;Kim, Hee Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.262-269
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the deformation of the complete denture artificial teeth arrangement after festooning over time. Materials and Methods: 10 wax dentures of equal teeth arrangement and equal gingival contour were used in this study. Festooning of the wax dentures were conducted and 3D model scans were conducted every 10 minutes for 120 minutes. Interdental transverse distances were measured with the scanned images. Statistical analyses were performed with SPSS Ver. 22. 0. Results: Interdental transverse distance between teeth varied from 0.0999 mm to 0.1787 mm. Mean rate of deformation showed statistically significant change between the 40 - 50 minute interval and 50 - 60 minute interval and between the 50 - 60 minute interval and 60 - 70 minute interval. No statistically significant change of the mean rate of deformation was observed later on. Conclusion: Monitoring of the interdental transverse distance for 120 minute after festooning have shown the deformation and displacment of the artificial teeth arrangement. From after the 60 - 70 minute interval after festooning, the mean deformation showed no statistically significant change of the mean rate of deformation was observed. Within the limitations of this in vitro study results suggest that the final occlusal adjustment in wax denture before complete denture curing should be proceeded at least 60 minutes later after festooning.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Comparative evaluation of flexural strength and modulus of denture base resin with mesh and stick type glass fiber reinforcement (망사 및 스틱 형태의 유리섬유 보강재를 삽입한 의치상용 레진의 굴곡강도 및 굴곡계수 비교 평가)

  • Kim, Dong-Yeon;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.91-98
    • /
    • 2020
  • Purpose: This study is to compare the flexural strength and modulus by inserting a mesh and stick type fiberglass reinforcement into resin specimens. Methods: Wax specimens (length 64 mm, width 39 mm, thickness 5 mm) are prepared according to ISO 20795-1:2013. Mesh type and stick type glass fiber reinforcements were prepared. The prepared wax specimens were used plaster and flask for investment. The flask was separated and the wax was removed. The heat curing resin was injected into the flask, and then a mesh type and stick type fiberglass reinforcement were inserted. The prepared resin specimen was cut into three equal parts (length 64 mm, width 10 mm, thickness 3.3 mm). The mesh type glass fiber reinforcement (MT group) and the stick type glass fiber reinforcement (ST group) were classified into two groups. The prepared specimen was measured using a universal testing machine (UTM). The data were analyzed by Mann-Whitney U test, and the significance level was set to 0.05. Results: In the flexural strength, the ST group was higher than the MT group, and there was a significant difference between the two groups (p<0.05). In the flexural modulus, the ST group was higher than the MT group, and there was a significant difference between the two groups (p<0.05). Conclusion: The stick-type glass fiber inreased the flexural strength than the mesh-type glass fiber reinforcement.

A study on the shear bond strength between Co-Cr denture base and relining materials (금속의치상과 의치이장재료 간의 결합력에 관한 연구)

  • Lee, Na-Young;Kim, Doo-Yong;Lee, Young-Soo;Park, Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Purpose: This study evaluated the bonding strength of direct relining resin to Co-Cr denture base material according to surface treatment and immersion time. Materials and methods: In this study, Co-Cr alloy was used in hexagon shape. Each specimen was cut in flat surface, and sandblasted with $110\;{\mu}m$ $Al_2O_3$ for 1 minute. 54 specimens were divided into 3 groups; group A-control group, group B-applied with surface primer A, group C-applied with surface primer B. Self curing direct resin was used for this study. Each group was subdivided into another 3 groups according to the immersion time. After the wetting storage, shear bond strength of the specimens were measured with universal testing machine. The data were analyzed using two-way analysis of variance and Tukey post hoc method. Results: In experiment of sandblasting specimens, surface roughness of the alloy was the highest after 1 minute sandblasting. In experiment of testing shear bond strength, bonding strength was lowered on group B, C, A. There were significant differences between 3 groups. According to period, Bonding strength was the highest on 0 week storage group, and the weakest on 2 week storage group. But there were no significant differences between 3 periods. According to group and period, bonding strength of all group were lowered according to immersion time but there were no significant differences on group B and group C, but there was significant difference according to immersion time on group A. Conclusion: It is useful to sandblast and adopt metal primers when relining Co-Cr metal base dentures in chair-side.

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.