• 제목/요약/키워드: Denture base thickness

검색결과 21건 처리시간 0.024초

발플라스트 레진 주입 시 발생되는 의치상의 두께변화에 관한 연구 (Research for Thickness Change of Denture Base in Flask when Injecting Valplast Flexible Partial Denture Resin)

  • 장완영;김부섭;정인성
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.47-56
    • /
    • 2008
  • This is a research for thickness change of denture base according to the shape of sprue & investment position of denture base in flask when injecting polyamid base resin for flexible partial denture as a part of study for Valplast among the flexible partial denture with a nylon base. It has been introduced several kinds of flexible partial denture product with a nylon base, but Valplast is the most widely used product among them. Valplast has been the most generally used material today since developed in 1950s in the United States as a material for flexible partial denture. Valplast is much more aesthetic than general metal-acrylic partial denture due to its translucent pink color and biocompatibility in terms of material characteristic. It keeps its flexibility for a long time after production, imposes a less burden on the teeth used as abutment, and it can be easily insert and remove due to its particular suppleness. Moreover, it is felt like real teeth more than metal-acrylic partial denture when being put in and takes alveolar bone under good protection since it receives occlusal force equally under the denture base. The most outstanding feature of Valplast is flexibility. The extent of its flexibility is determined by width & thickness of denture base. Considering general working procedure of Valplast, it can be seen that the thickness of denture base formed out of wax is increasing by the pressure while injecting resin. This research is to decide and test on the thickness increasing of Valplast by injecting pressure and the hypothesis upon that and is to prepare the basis estimating the increasing extent of thickness of denture base on the basis of the test result. In this test, it is expected occlusal malposition & thickness increasing of denture base by injecting pressure according to 4 kinds of test data which are to select 3 types of sprue method settling the forefront position at which the test material of fixed standard can be invested and to position the test material at the rearmost part keeping the minimum distance to set sprue. For 4 kinds of injecting test by investment position & sprue type, 20 test materials, 5 for each test were produced and a pressure of 1,180Kg was given with automatic injector of air cylinder type. The results are as follows: 1. For the amount of thickness increasing of denture base by investment position, the thickness of front investment is less increasing than the one of rear investment. 2. For the amount of thickness increasing of denture base by sprue type, the thickness of straight decompression sprue type which can absorb the injecting pressure after injecting polyamide base resin is less increasing than the other sprue types.

  • PDF

국소의치상을 위한 연성 이장재사용시 교합압에 따른 의치상 변위(Displacement)량 비교 (A STUDY ON DIFFERENT AMOUNT OF DENTURE BASE DISPLACEMENT USING SOFT DENTURE RELINING MATERIAL UNDER MASTICATORY FORCE)

  • 이호용
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.18-25
    • /
    • 1998
  • The purpose of this study was to determine how to use soft relining material by observing an amount of denture displacement according to the different base area of residual ridge and thickness of soft relining material under masticatory force. Stone models that simulated residual ridge were made with different amount of denture base area and denture was fabricated by conventional heat curing resin with usual manner on the model and relined by silicone type soft relining material with different thickness. Specimen was examined the amount of denture displacement by Instron within range of normal occlusal force. The results were as following : 1. The increasing rate of denture displacement was higher than that of soft relining material thickness. 2. The amount of denture displacement decreased 1.7 times when base area became double at same thickness of soft relining material 3. The increasing rate of denture displacement was higher than that of occlusal force

  • PDF

개상한 의치상의 전단굴곡강도 변화 (THE CHANCE IN TRANSVERSE STRENGTH OF DENTURE BASE AFTER RELINE PROCEDURE)

  • 김선영;방몽숙
    • 대한치과보철학회지
    • /
    • 제37권6호
    • /
    • pp.782-790
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of proportional thickness of various reline materials on the transverse strength of denture base. The denture base resin used in this study was Vertex $RS^{(R)}$ (Dentimex Zeist., Holland). The reline resins used were Tokuso $rebase^{(R)}$ normal set (Tokuyama Corp., Japan), $Rebaron^{(R)}$ (GC Corp., Japan), $Kooliner^{TM}$ (GC INC., U.S.A), New $truliner^{TM}$(Harry J. Bosworth Co., U.S.A). The bulk specimens with 2.5mm thickness of denture base were prepared as the control group. Group 1 was fabricated with 2.0mm thickness of denture base and 0.5mm reline material, group 2 with 1.5:1.0mm, group 3 with 1.0:1.5mm, group 4 with 0.5:2.0mm composition. Measurements of transverse strength were taken for each specimens The results were as follows: 1. Regardless of the reline resin type, the transverse strength of denture base was decreased after reline procedure. 2. The transverse strength according to the reline resin type was decreased in the following order : Rebaron, Tokuso rebase, Kooliner, and then New truliner and there was a significant difference among the reline materials (P<0.05). 3. The strength of the relined denture base generally decreased as the proportional thickness of the denture reline material increased. These results suggest that increasing the proportional thickness of the reline material progressively decreased the strength of the relined denture base. Thus, the denture base should not be unnecessarily altered during the reline procedure.

  • PDF

CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교 (Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins)

  • 이동형;이준석
    • 구강회복응용과학지
    • /
    • 제36권3호
    • /
    • pp.183-195
    • /
    • 2020
  • 목적: 이 논문의 목적은 CAD/CAM 의치상 레진과 열중합 의치상 레진의 굴곡 강도를 비교해보고, 두께에 따른 굴곡 강도 변화도 비교해보는 것이다. 연구 재료 및 방법: 열중합 의치상 레진은 Lucitone 199® (C-LC)을 사용하였다. 3D printing 의치상 레진으로는 DIOnavi - Denture (P-DO)와 DENTCA - Denture Base II (P-DC)를 사용하였다. 밀링 PMMA 블록으로는 Vipi Block Gum (M-VP)과 M-IVoBase® CAD (M-IV)를 사용하였다. 시편의 최종 규격은 65.0 mm × 12.7 mm × 1.6 mm / 2.0 mm / 2.5 mm였다. 굴곡 강도와 굴곡 탄성율을 측정하기 위해 3점 굽힘 시험을 실시하였다. 그리고 파절된 시편의 단면을 주사전자현미경 (SEM) 을 사용하여 분석하였다. 데이터의 정규성을 확인한 뒤 일원분산분석(one-way ANOVA)을 사용하여 유의 수준 P = 0.05로 설정하여 그룹 간의 차이를 평가한 뒤, 사후 분석을 위해 Tukey HSD test를 시행하였다. 결과: 동일 두께 내에서, P-DO를 제외한 나머지 CAD/CAM 의치상 레진들과 열중합 의치상 레진의 굴곡 강도는 유의한 차이를 나타내었다. M-VP는 열중합 의치상 레진 보다 굴곡 강도가 높게 나타났고, P-DC와 M-IV는 낮은 굴곡 강도를 보였다. 굴곡 탄성률은 M-VP에서 제일 높게 나타났고 C-LC, P-DO, P-DC, M-IV 순으로 낮아졌으며 재료간에 모두 유의한 차이가 나타났다. 두께에 따른 굴곡 강도는, C-LC에서는 2.5 mm가 1.6 mm보다 유의하게 높은 굴곡 강도를 보였고, P-DC, M-VP는 2.5 mm와 2.0 mm에서 1.6 mm보다 유의하게 높은 굴곡 강도가 나타났다. M-IV에서는 두께가 증가할수록 유의한 굴곡 강도 증가가 나타났다. SEM 분석 결과 서로 다른 재료들의 파절된 단면은 각기 다른 양상을 띄었다. 결론: 본 연구에서 사용된 CAD/CAM 의치상 레진의 굴곡 강도는 각 재료의 성분 및 특성에 따라 다양하게 나타났다. CAD/CAM 의치상 레진의 굴곡 강도는 두께가 감소하여도 1.6 mm 이상의 두께에서는 ISO 20795-1:2013에서 제시하는 굴곡 강도보다 높게 나타났다. 하지만 보다 얇은 두께의 의치를 임상적으로 사용하기 위해서는, 더 낮은 두께의 의치상 레진의 다른 특성들에 관한 추가적인 연구가 필요하다.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

극초단파에너지에 의해 온성된 의치상용 레진의 다공성에 관한 연구 (A STUDY ON THE POROSITY OF DENTURE BASE RESINS PROCESSED BY MICROWAVE ENERGY)

  • 정창모
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.816-822
    • /
    • 1996
  • The purpose of this study was to determine whether there was any difference in the mean porosity of denture base resin cured by microwave energy, when the liquid monomers of denture resin(K-33 : methyl methacrylate for conventional water bath curing or Acron MC : special monomer for microwave curing) and/or the thicknesses of denture base($5{\times}10{\times}60mm\;or\;10{\times}10{\times}60mm$) were varied. The mean porosities of k-33 specimens cured in water bath with two different thicknesses were used as control. The results were as follows : 1. Regardless of specimen thickness, Acron MC cured by microwave energy showed the least mean porosity, followed by K-33 cured by water bath heat, and K-33 cured by microwave energy showed the highest level of mean porosity(P<0.05). 2. In both K-33 and Acron MC cured by microwave energy the mean porosities of 5mm thickness groups were lower than those of 10mm thickness groups(P<0.05). But no significant difference was found in mean porosity between 5mm thickness and 10mm thickness of water bath heat cured groups made of K-33(P>0.05).

  • PDF

유리섬유 보강재 첨가에 따른 레진 의치상의 강화효과 (Strengthening effect of resin denture base by glass fiber reinforcement addition)

  • 김총명;김지환;김혜영;김웅철
    • 대한치과기공학회지
    • /
    • 제36권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Purpose: The aim of this study was analyzed by comparing the effect of glass fiber reinforcement addition on the strength of resin denture base. It was intended to provide a reference data useful for clinical application. Methods: The test specimens (length $64.0{\pm}0.1mm$, width $10.0{\pm}0.1mm$, thickness $1.0{\pm}0.1mm$, $1.5{\pm}0.1mm$, and $2.0{\pm}0.1mm$ respectively) were made. In the experimental groups resin denture base reinforced with glass fiber were fabricated. In the control groups resin denture base were fabricated by conventional method. After specimen fabrication was completed, transverse test was performed using a universal testing machine. Results: The transverse strength value in CON group was $83.08{\pm}9.07MPa$ for 1.0 mm, which ranked the highest in value. On the other hand, the value was $56.07{\pm}5.15MPa$ for 2.0mm, which ranked the lowest in value. And CON+SES group was $119.80{\pm}30.70MPa$ for 1.0mm, which ranked the highest in value. On the other hand, the value was $84.00{\pm}7.97MPa$ for 2.0mm, which ranked the lowest in value. Also, the flexural modulus value in CON group was $2,983.10{\pm}506.92MPa$ for 1.0mm, which ranked the highest in value. On the other hand, the value was $1,257.64{\pm}230.48MPa$ for 2.0mm, which ranked the lowest in value. And CON+SES group was $4,679.41{\pm}1578.29MPa$ for 1.0mm, which ranked the highest in value. On the other hand, the value was $2,512.36{\pm}527.09MPa$ for 2.0mm, which ranked the lowest in value. Conclusion: The reinforced glass fiber increased the strength of resin denture base, effected to reduce the thickness of resin denture base.

발효음식이 의치상레진의 색상 및 표면경도 변화에 미치는 영향 (THE EFFECT OF FERMENTED FOODS ON THE COLOR AND HARDNESS CHANGE OF DENTURE BASE ACRYLIC RESINS)

  • 전열매;임헌송;신수연
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.344-355
    • /
    • 2004
  • Statement of problem: For a long time, many of denture base acrylic resins have been used for edentulous and partial edentulous patients because of easy manipulation and good mechanical properties, but its esthetic aspect has not been commented enough. Denture base acrylic resins also has caused esthetic problems due to discoloration or staining as in esthetic restoration. Many researches and reports have treated the problems and accomplished esthetic improvement. But these researches and reports dealt with general food colors or beverages, not with fermented foods. Purpose: This study is designed to assess what fermented foods, such as soy sauce, gochujang, and toenjang that many of Koreans have taken in, influence on the color and hardness variation of denture base acrylic resins. Materials and methods: For the procedure, twelve disks per 4 denture base acrylic resins were fabricated with a thickness of 2mm and 16mm in diameter. Each seven specimen were measured for discoloration with spectrophotometer, while the others, five specimen, for surface hardness change with Barcol hardness tester, over time. Each 12 specimen were immersed into the 4 beakers of fermented foods(soy sauces, gochujangs, toenjangs, deionized water), and $L^{*},a^{*}$, and $b^*$ values were measured for the color difference$({\Delta}E^*)$, on the 1st, 7th, and 28th day with spectrophotometer, with the measurement of surface hardness change. Each data observed was processed statistically. Results: The findings are as follows; Discoloration 1. All of denture base resins was not influenced by the kind of fermented foods, except for $QC20^{(R)}$ 2. Soy sauce and red pepper paste caused more change for denture base resins than deionized water and soy bean paste, except for Perform$^{(R)}$ 3. Most significant change was shown in Lucitone 199$^{(R)}$, whereas Perform$^{(R)}$ results in the least change for all immersed solution, with no statistical significance. Hardness change 1. Barcol hardness values in deposited specimens have been changed low degree, but with significant statistical change according to the kind of food and duration. 2. Lucitone$^{(R)}$ 199 as significantly lower Barcol hardness value than others do. Conclusion: Based on the above results, it suggests that the habitual intake of fermented foods is not helpful for the color stability of denture base acrylic resins because Soy sauce and red pepper paste mainly caused discoloration and surface hardness change. Particularly $Lucitone199^{(R)}$ shows specific discoloration and low surface hardness values. Therefore, it is recommended giving caution patients with denture of $Lucitone199^{(R)}$ especially against the habitual intake of fermented foods like soy sauce and red pepper paste.

인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구 (A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES)

  • 정형곤;정문규;이호용
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

연마 과정에 따른 열중합 의치상 레진의 표면 거칠기 평가 (Evaluation of surface roughness of heat-polymerized denture base resin according to the polishing step)

  • 황성식;임용운;김시철;한민수
    • 대한치과기공학회지
    • /
    • 제37권4호
    • /
    • pp.205-212
    • /
    • 2015
  • Purpose: The objective of this study was to compare the surface roughness according to polishing process in conventional laboratory techniques used for polishing three different acrylic denture base resins. Materials and methods: Specimen preparation and surface polishing procedures were conducted to manufacturer's recommendation with three heat-polymerized denture base resins. Surface roughness and gloss were measured by a contact type tester and a LED gloss checker using thickness 2 mm and diameter 10 mm. There were five specimens for each acrylic resin material and polishing procedures. Mean average surface roughness (Ra) values of each specimen group were analyzed using a one-way ANOVA analysis of variance and Scheffe's post hoc test. Surfaces after surface roughness and gloss testing according to each polishing process were evaluated under a stereoscopic microscope. Results: The highest mean average surface roughness was measured($Ra=2.43{\pm}0.47$) for surfaces finished with a denture tungsten carbide bur in Triplex. The lowest surface roughness values ($Ra=0.11{\pm}0.07$) were determined in Vertex polished with a lathe. In addition, all materials revealed that surface roughness determined highly in HP1 and HP2 than other procedures. All correlation between surface roughness and gloss showed highly with three heat-polymerized resins. Specially, topmost correlation revealed than other material in Triplex. Significant differences in mean average surface roughness were found between polishing process used high speed lathe and low speed hand-piece. Conclusion: Laboratory polishing used to high speed was found to produce the smoothest surface of heat-polymerized denture base acrylic resin. Therefore, we recommended that high polishing process need to get smooth surface.