• Title/Summary/Keyword: Dental marginal adaptation

Search Result 52, Processing Time 0.026 seconds

Comparison of three-dimensional digital technique with two-dimensional replica method for measuring marginal and internal fit of full coverage restorations

  • Hasanzade, Mahya;Koulivand, Soudabeh;Moslemian, Naeime;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • PURPOSE. This study compared digital (reference point matching) and replica methods for measuring marginal and internal fit of full coverage restorations. MATERIALS AND METHODS. A maxillary left first molar typodent was fixed on to an aluminum base and prepared to receive all-ceramic full coverage restoration. The model was scanned with an intraoral scanner (CEREC Omnicam, Sirona, York, PA, USA). Twelve crowns were fabricated from lithium disilicate blocks (IPS emax CAD, Ivoclar Vivadent) and then crystalized. Marginal and internal fit of each restoration was measured by two examiners using replica and a new digital three-dimensional technique. Reliability between the two methods and two examiners was assessed by correlation and Cronbach's Alpha coefficient (P<.05). A Bland-Altman assessment for agreement was used to compare the two methods. RESULTS. Bland-Altman assessment showed that the mean of difference for marginal, absolute marginal, and axial gap was respectively -1.04 ㎛, -41.9 ㎛, and -29.53 ㎛ with limit of agreement (LOA) between -37.26 to 35.18 ㎛ for marginal, -105.85 to 22.05 ㎛ for absolute marginal and -80.52 to 22.02 ㎛ for axial gap. Positive correlation for repeatability (P<.05) in determining marginal and internal gaps by the two examiners in both techniques was revealed. Reliability of both techniques in all sites of measurements was at least good (0.8 ≤ α < 0.9). CONCLUSION. Both measuring techniques appeared highly reliable for evaluating fit of fixed dental restorations, while reference point matching provided higher values in axial and absolute marginal gap assessment.

The use of definitive implant abutments for the fabrication of provisional crowns: a case series

  • Bilhan, Hakan;Geckili, Onur;Mumcu, Emre
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.248-252
    • /
    • 2011
  • Purpose: The anterior region is a challenge for most clinicians to achieve optimal esthetics with dental implants. The provisional crown is a key factor in the success of obtaining pink esthetics around restorations with single implants, by soft tissue and inter-proximal papilla shaping. Provisional abutments bring additional costs and make the treatment more expensive. Since one of the aims of the clinician is to reduce costs and find more economic ways to raise patient satisfaction, this paper describes a practical method for chair-side fabrication of non-occlusal loaded provisional crowns used by the authors for several years successfully. Methods: Twenty two patients (9 males, 13 females; mean age, 36,72 years) with one missing anterior tooth were treated by using the presented method. Metal definitive abutments instead of provisional abutments were used and provisional crowns were fabricated on the definitive abutments for all of the patients. The marginal fit was finished on a laboratory analogue and temporarily cemented to the abutments. The marginal adaptation of the crowns was evaluated radiographically. Results: The patients were all satisfied with the final appearance and no complications occurred until the implants were loaded with permanent restorations. Conclusions: The use of the definitive abutments for provisional crowns instead of provisional abutments reduces the costs and the same results can be obtained.

MARGINAL ADAPTATION OF STAINLESS STEEL IN POSTERIOR PRIMARY TOOTH (유구치 기성 금관의 변연 적합도에 관한 연구)

  • Woo, Jue-Hyung;Jang, Chul-Ho;Kim, Jung-Wook;Jang, Ki-Taeg;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Stainless steel crowns are invaluable restorative material for the treatment of badly broken down primary teeth in pediatric dentistry. But it is difficult to fit margin because selection of size is not easy and they are not adjusted for Korean children. The purpose of this study was to examine and analyze the marginal adaptation of stainless steel crown of posterior primary tooth. Marginal surface was taken by Fine Pix S602 digital camera and measurements of crown were recorded at 20 points that were randomly selected for marginal gap evaluation by Kappa image base program. 1. Mean marginal gap were large upper 2nd primary molar, lower 1st primary molar, lower 2nd primary molar, upper 1st primary molar in order(p<0.05). 2. Mean marginal surface dimension ratio was more than 20% irrespective of tooth. 3. Largest amount of marginal gap was shown at mesial surface in upper 1st, 2nd primary molar and distolingual surface in lower 1st primary molar, buccal surface in lower 2nd primary molar.

  • PDF

THE STUDY ABOUT THE MARGINAL FIT OF THE CASTING TITANIUM AND MACHINE-MILLED TITANIUM COPINGS (주조티타늄과 기계절삭티타늄 코핑의 변연적합성에 관한 연구)

  • Oh Su-Yeon;Vang Mong-Sook;Yang Hong-So;Park Sang-Won;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.20-28
    • /
    • 2006
  • Statement of problem: The titanium has advantages of a high biocompatibility, a corrosion resistence, low density, and cheep price, so it is focused as a substituted alloy But it is quite difficult to cast with the tranditional method due to the high melting point, reacivity with element at, elevated temperature. By using the CAD-CAM system for the crown construction, it is possible to reduce the errors while proceeding the wax-up, investing, and casting procedure Purpose: The purposes of this study were to measure the marginal adaptation of the casting titanium coping and machine-milled titanium coping according to the casting methods and the marginal configurations. Material and method: The marginal configurations were used chamfer shoulder, and beveled shoulder. The total 30 copings were used, and these are divided into 6 groups according to the manufacturing method and marginal configuration. The gap between margin of the model and the restoration was measured with 3-dimensional measuring microscope. Results: The following results were obtained; 1. casting gold coping demonstrated the best marginal seal, followed by casting titanium coping finally machine-milled titanium copings. 2. In casting titanium coping, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. There was no significantly difference in shoulder and beveled shoulder. But all margin form has clinically acceptable 3. In machine-milled titanium copings, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. Beveled shoulder show large and uneven marginal gap Conclusions: Above result revealed that marginal adaptation of the titanim coping is avail able in the clinical range, it can be used as an alternative metal and it is prefered especially in chamfer or shoulder margin during implant superstructure fabrication. But there should be more research on machine-milled titanium in order to use it in the clinics.

Evaluation and comparison of the marginal adaptation of two different substructure materials

  • Karaman, Tahir;Ulku, Sabiha Zelal;Zengingul, Ali Ihsan;Guven, Sedat;Eratilla, Veysel;Sumer, Ebru
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • PURPOSE. In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, $24.47{\pm}5.82{\mu}m$ before and $35.11{\pm}6.52{\mu}m$ after cementation; in the laser-sintered Co-Cr structure, it was, on average, $60.45{\pm}8.87{\mu}m$ before and $69.33{\pm}9.03{\mu}m$ after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

Marginal Adaptation of Zirconium Dioxide Core according to the Abutment Teeth (지대치 형태에 따른 지르코니아 코어의 변연 적합도)

  • Kim, Ki-Baek;Kim, Seok-Hwan;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • The present study investigated the influences of various abutment teeth shapes (maxillary right canine, pre-molar, molar) on the marginal adaptation of computer aided design/computer aided manufacturing-fabricated zirconia core. In vitro adaptation of zirconia cores manufactured by three different abutments were evaluated. Thirty zirconia cores were made per each models and the adaptation was evaluated through a silicone replica technique. The measurement of the adaptation was carried out using digital microscope. The mean and standard deviation of each reference point were analyzed using the one-way (ANOVA) and Tukey's honestly significant difference tests (${\alpha}=0.05$). The overall marginal fits of the zirconia cores were as follows: canine: $47.59{\mu}m$, pre-molar: $43.74{\mu}m$, molar: $40.36{\mu}m$. They were no statistically significant differences between groups for adaptation (p>0.05). This confirmed that the type of abutment teeth used does not determine the precision of fit of zirconia core.

CLINICAL EVALUATION OF AMALGAM BONDING : TWO YEARS FOLLOW-UP (접착형 아말감의 2년 후 임상적 평가)

  • Ryu, Phil-Jun;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.530-534
    • /
    • 2001
  • Many dental practitioners are bonding amalgam to tooth structure. The potential advantage of this procedure, suggested by in vitro test results, are reduced microleakage, which could lead to a reduced incidence of postoperative sensitivity ; increased strength of the prepared tooth ; and retention of restoration in less retentive preparations, with the potential fer conserving tooth structure. Although in vitro studies support this procedure, its efficacy has not been adequately confirmed in the clinical environment. The authors placed traditional Class I and Class II, bonded and unbonded amalgam restorations in 76 teeth. Fuji I Glass Ionomer luting cement was the bonding agent selected. Marginal adaptation were evaluated after two years. the authors found no significant difference in marginal adaptation between bonded and unbonded restorations.

  • PDF

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Evaluation of the marginal and internal fit of lithium disilicate crowns fabricated by different scanning methods (다른 스캐닝 방법으로 제작된 리튬 디실리케이트 단관의 변연 및 내면 적합도 평가)

  • Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Purpose: This study was to compare adaptations of lithium disilicate CAD/CAM crowns fabricated with different scanning systems. Methods: This study selected the mandibular right first molar as an abutment for experiments and produced 10 working models. Lithium disilicate crowns appropriate for each abutment were produced by using a CEREC$^{(R)}$ CAD/CAM system. The independent t-test was then used to compare and analyze the data obtained from the two groups(${\alpha}$=0.05). Results: Mean(SD) adaptation were $86.93(22.82){\mu}m$ for the InS group, $88.42(26.77){\mu}m$ for the ExS group. They were no statistically significant differences between groups for adaptation(p>0.05). Conclusion: Within the limitations of this study, the results suggest that the accuracy of all investigated optical scanner were satisfactory for clinical use. Further assessment and improvement of the lithium disilicate ceramic for the fabrication of FPDs is evidently still required.