• Title/Summary/Keyword: Dental Morphology

Search Result 433, Processing Time 0.036 seconds

Understanding and treatment strategy of the physiologic occlusal change in elderly patients (임상가를 위한 특집 1 - 장노년의 생리적 교합변화의 이해와 치료전략)

  • Kim, Jee-Hwan;Shim, June-Sung
    • The Journal of the Korean dental association
    • /
    • v.50 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • As in all other parts in the body, oral tissue also undergoes dramatic changes with increasing age. Since these changes occasionally go beyond physiological scope, which may result in pathological changes, it is essential for dentist to understand changes caused by normal aging process. With increasing age, tooth morphology and occlusion also varies, especially loss of hard tissue, which is taking place in lifelong time, occurs as a result of tooth wear. When this loss of hard tissue is presented rapidly or excessively, functional and esthetical problems are raised, resulting in lowering quality of life of patient as well as making dental treatment for oral rehabilitation even more complex. Therefore, based on understanding of change in occlusion with increasing age, strategic approaches for maintenance of oral health in both functional and esthetic aspect are required as appropriate restoration and maintenance for progressive tooth wear enables desirable occlusal relationship. Carefully planned-restorative treatment in accordance with changed occlusal relationship is also required in the same context. Instead of taking changes in oral tissue as only a consequence of ageing, it is vital to educate patient and his or her guardian, assuring maintenance of oral hygiene and regular dental check-up are of utmost importance for improved oral health.

Mineralization-inducing potentials of calcium silicate-based pulp capping materials in human dental pulp cells

  • Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • Background: This study was performed to provide a long-term bacterial seal through the formation of reparative dentin bridge, calcium silicate-based pulp capping materials have been used at sites of pulpal exposure. The aim of this study was to evaluate the mineralization-inducing potentials of calcium silicate-based pulp capping materials (ProRoot MTA [PR], Biodentine [BD], and TheraCal LC [TC]) in human dental pulp cells (HDPCs). Methods: Specimens of test materials were placed in deionized water for various incubation times to measure the pH variation and the concentration of calcium released. The morphology of HDPCs cultured on the specimens was examined using a confocal laser scanning microscope (CLSM). Alizarin red S staining and alkaline phosphatase assays were used to evaluate mineralization-inducing potentials of the capping materials. Results: BD showed the highest calcium release in all test periods, followed by PR and TC. (p<0.05). All experimental groups showed high alkalinity after 1 day, except at 14 days. BD showed the highest cell viability compared with PR and TC after 1 and 3 days, while TC showed the lowest value (p<0.05). The CLSM analysis showed that cells were well adhered and expressed actin filaments for all pulp capping materials. Mineralization by PR and BD groups was higher than that by TC group based on alizarin red S staining. BD showed significantly higher alkaline phosphatase activity than PR and TC, while TC showed the lowest value (p<0.05). Conclusion: Within the limitations of the in vitro study, BD had higher mineralization-inducing potential than PR and TC.

Antimicrobial Effect of Low Temperature Atmospheric Plasma against Oral Pathogens

  • Kim, Young Min;Choi, Byul Bo Ra;Park, Sang Rye;Kim, Ji Young;Kim, Gyoo Cheon
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.167-173
    • /
    • 2015
  • The purpose of this study was to investigate the antibacterial effect of the low temperature atmospheric plasma device with needle tip designed for easy approach to the oral cavity and root canal against Streptococcus mutans, Enterococcus faecalis and Candida albicans. The antibacterial activities evaluated by measuring clear zone of agar plate smeared with each bacteria after plasma treatment. To quantify antibacterial effects, dilution plate method was used. In addition, scanning electron microscope (SEM) was used for observation of changes in bacterial morphology. As treatment time of plasma increased, the clear zone was enlarged. The death rate was more than 99%. The SEM results showed that the globular shape of bacteria was distorted. These results suggest that needle tip plasma could be an innovative device for prevention of dental caries, and treatment of apical infection and soft tissue diseases.

Study on the Corrosin Properties of Au-Ag-Cu Dental Alloys (치과용 Au-Ag-Cu계 합금의 부식특성에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.23-43
    • /
    • 1992
  • Corrosion characteristics of four commerial gold-based dental alloys(C-1; Au75%, Ag13.9%, Pd3%, Cu & etc.,8.1%, C-2 ;Au 52.08, Ag 24%, Pd 5%, Cu & etc.,18.92, C-3 ; Au 53%, Ag 22%, Pd 5%, Pt 3% Cu & etc.,17%, C-4 ; Au 53%, Pd4, Pt1.5%, Ag & Cu & etc.,41.5%) and four experimental ternary Au-Ag-Cu alloys(E-1 ; Au 50%, Ag 30%, Cu 20%, E-2 ; Au 50%, Ag 20%, Cu 30%, E-3 ; Au 50%, Ag 10%, Cu 40%, E-4 ; Au 50%, Ag 40%, Cu 10%) were investigated by potentiodynamic polarization analysis and the structure was examined by optical microscope and SEM. All corrosion testing was conducted in 1% NaCl solution. The main results are as follows : 1. The corrosion resistence of commercial alloys was decreased in the order of C-1, C-3, C-4, C-2. C-2. 2. The E-1 and E-3 ternary alloys exhibits the higher corrosion resistence than E-2 and E-4 alloys. 3. The cast microstructure of alloys reveals dendrite morphology which shows the significant microsegregation caused by the difference in the diffusion rate between liquid and solid. 4. It is found that the surface corrosion products were mainly AgCl by X-ray diffraction results.

  • PDF

Effects of TiN Coating on the Fatigue Fracture of Dental Implant System with Various Cyclic Loads

  • Jung, Da-Un;Chung, Chae-Heon;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.283-291
    • /
    • 2015
  • The purpose of this study was to investigate effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads. TiN coated abutment screw, the fixture, and abutment of internal hex type were prepared for fatigue test. The fatigue test was carried out according to ISO 14801:2003(E) using tensile and compression tester with repeated load from 30% to 80% of static fracture force. Morphology and fractured surface was observed by field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscope(EDS). The fracture cycle drastically decreased as repeated load increased. Especially, in the case of TiN-coated abutment screw, fracture cycle increased compared to non-coated abutment screw. The fatigue crack was propagated fast as repeated load increased. The plastic deformation region decreased, whereas, cleavage fracture region increased as repeated load increased.

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N;Lee, Hyun Chul;Chu, Min Cheol;Ryu, Jae-Kyung;Balakrishnan, Avinash;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.492-496
    • /
    • 2015
  • Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

Synthesis of Calcium Phosphate Minerals from Biowaste Clam Shells Using Microwave Heating

  • Bramhe, Sachin;Ryu, Jae-Kyung;Chu, Min Cheol;Balakrishnan, Avinash;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.700-703
    • /
    • 2014
  • Calcium phosphate minerals are biologically important because of their application in the fields of orthopaedics and dentistry. Herein we have tried to synthesize calcium phosphate minerals from biowaste clam shells. A simple microwave method was used to synthesize a mixture of calcium phosphate minerals such as hydroxyapatite, tri-calcium phosphate, and monetite. The microwave induces vibration of the dipole ions in the reagent. The heating and rearrangement of ions and atoms occurs during the process. The phases obtained in the final powder were ascertained by X-ray diffraction; the morphology of each sample was checked using a scanning electron microscope. We were able to obtain a mixture of calcium phosphate minerals using the microwave method; the calcined powder showed a brick like morphology, which is different from the rod shape morphology of the hydroxyapatite obtained using the hydrothermal process.

Effect of Blood Contamination on Vickers Microhardness and Surface Morphology of Mineral Trioxide Aggregate

  • Jaehyun Seung;Seong-Jin Shin;Byounghwa Kim;Ji-Myung Bae;Jiyoung Ra
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • This study aimed to investigate the effects of blood contamination on the Vickers hardness and the surface morphology of premixed MTA and compare them with the effects on conventional MTA. The Vickers microhardness of Endocem MTA Premixed Regular (EP) and ProRoot MTA (PM) was assessed after immersion in fetal bovine serum (FBS) and saline. Stem cells from human exfoliated deciduous teeth (SHED) were seeded on MTA after immersion in FBS, saline, and deionized water (DW). Cell adhesion patterns and surface morphology were visualized via scanning electron microscopy (SEM). The surface microhardness of EP and PM in FBS was lower than in saline. However, short-term exposure of PM to FBS did not reduce the microhardness compared to saline. Angular crystals formed in water, while rounded crystals with more air voids appeared in FBS. Favorable SHED attachment occurred in all groups. Overall, the surface hardness of EP and PM decreased after FBS exposure, although PM was less influenced. We suggest minimizing the amount of bleeding when using MTA clinically; nevertheless, PM remains an option with more expected blood contamination than EP. In summary, exposure to FBS decreased mechanical performance but allowed cell adhesion for both MTAs, with PM being more resistant to these changes.

Factors that affect the bite force measurement (교합력 측정에 영향을 주는 요인)

  • Im, Ji-Ho;Lee, Wonsup;Kim, Myung-Joo;Lim, Young-Jun;Kwon, Ho-Beom
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Mastication is the process to help digestion by chewing or grinding food. Masticatory system consists of maxilla, mandible, temporomandibular joints, ligaments, dentitions, and musculatures. Assessing the bite force can be one of the methods to estimate the masticatory system. Bite force is influenced by facial morphology, age, sex, periodontal status, temporomandibular joint disorder and dental condition, and so forth. In general, higher maximum bite force is seen in those who have a square-shaped face and in male rather than female. In addition, bite force tends to be increased by age 20, maintained constantly until age 40 - 50, and then decreased. Periodontal disease is known as a causative factor for decreased bite force while temporomandibular disorder (TMD) remains controversial as to whether it affects the force. The status of teeth is considered as an important factor to determine the maximum bite force.

Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study

  • Amini, Fariborz;Rakhshan, Vahid;Pousti, Maryam;Rahimi, Hajir;Shariati, Mahsa;Aghamohamadi, Bahareh
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Objective: The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods: This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodontics, OrthoTechnology, and All-Star Orthodontics. Aft er analyzing the composition of each wire by energy-dispersive X-ray analysis, the SR of each wire was determined by scanning electron microscopy (SEM) and surface profilometry. Data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests (${\alpha}$ < 0.05). Results: The average SR of NiTi wires manufactured by Smart Technology, American Orthodontics, OrthoTechnology, and All-Star Orthodontics were $1,289{\pm}915A^{\circ}$, $1,378{\pm}372A^{\circ}$, $2,444{\pm}369A^{\circ}$, and $5,242{\pm}2,832A^{\circ}$, respectively. The average SR of SS wires manufactured by All-Star Orthodontics, OrthoTechnology, and American Orthodontics were $710{\pm}210A^{\circ}$, $1,831{\pm}1,156A^{\circ}$, and $4,018{\pm}2,214A^{\circ}$, respectively. Similar to the results of profilometry, the SEM images showed more defects and cracks on the SS wire made by American Orthodontics and the NiTi wire made by All-Star Orthodontics than others. Conclusions: The NiTi wire manufactured by All-Star Orthodontics and the SS wire made by American Orthodontics were the roughest wires.