Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.9.492

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods  

Bramhe, Sachin N (Department of Material Science and Engineering, Pai Chai University)
Lee, Hyun Chul (Department of Material Science and Engineering, Pai Chai University)
Chu, Min Cheol (Center for New Functional Materials Metrology, Korea Research Institute of Standards and Science)
Ryu, Jae-Kyung (Department of Dental Technology and Science, Shinhan University)
Balakrishnan, Avinash (Nanosolar Division, Amrita Centre for Nanosciences)
Kim, Taik Nam (Department of Material Science and Engineering, Pai Chai University)
Publication Information
Korean Journal of Materials Research / v.25, no.9, 2015 , pp. 492-496 More about this Journal
Abstract
Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.
Keywords
hydroxyapatite; hydrothermal; micro-rods; solution combustion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. R. Rao, H. N. Roopa and T. S. Kannan, J. Mater. Sci.:Mater. Med., 8, 511 (1997).   DOI
2 M. Itokazu, W. Yang, T. Aoki, A. Ohara and N. Kato, Biomaterials, 19, 817 (1988).
3 C. Zhang, S. Shihui and Z. Yang, Sep. Purif. Technol., 143, 88 (2015).   DOI   ScienceOn
4 H. Liu, G. W. Xu, Y. F. Wang, H. S. Zhao, S. Xiong, Y. Wu, B. C. Heng, C. R. An, G. H. Zhu and D. H. Xie, Biomaterials, 49, 103 (2015).   DOI   ScienceOn
5 R. Z. LeGeros and J. Legeros, Hydroxyapatites, in: L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993, p. 139.
6 W. Ye and X. X. Wang, Mater. Lett., 61, 4062 (2007).   DOI   ScienceOn
7 S. K. Swain and D. Sarkar, Ceram. Int., 37, 2927 (2011).   DOI   ScienceOn
8 M. P. Ferraz, F. J. Monteiro and C. M. Manuel, J. Appl. Biomater. Biom., 2, 74 (2004).
9 H. H. K. Xu and C. G. Simon, J. Orthop. Res., 22, 535 (2004).   DOI   ScienceOn
10 G. Balasundaram, M. Sato and T. J. Webster, Biomaterials, 27, 2798 (2006).   DOI   ScienceOn
11 K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido and S. Asai, Mater. Trans., 44, 1133 (2003).   DOI   ScienceOn
12 M. Tanahashi, K. Kamiya, T. Suzuki and H. Nashu, J. Mater. Sci. Mater. Med., 3, 48 (1992).
13 H. C. Park, D. J. Baek, Y. M. Park and S. Y. Yoon; J. Mater. Sci., 39, 2531 (2004).   DOI   ScienceOn
14 M. R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani and C. C. Sorell, Mater. Lett., 57, 4064 (2003).   DOI   ScienceOn
15 W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998).   DOI   ScienceOn
16 J. C. Elliott, P. E. Mackie and R. A. Young, Science, 180, 1055 (1973).   DOI   ScienceOn
17 H. Zhang, Y. Wang, Y. Yan and S. Li, Ceram. Int., 29, 413 (2003).   DOI   ScienceOn
18 Y. M. Park, S. C. Ryu, S. Y. Yoon, R. Stevens and H. C. Park, Mater. Chem. Phys., 109, 440 (2008).   DOI   ScienceOn
19 C. Qiu, X. Xiao and R. Liu, Ceram. Int., 34, 1747 (2008).   DOI   ScienceOn
20 K. P. Sanosh, A. Balakrishnan, M. C. Chu, Y. J. Lee, T. N. Kim and S. J. Cho, Particuology, 7, 466 (2009).   DOI   ScienceOn
21 H. Li, W. Huang, Y. Zhang and M. Zhong, Mater. Sci. Eng. C, 27, 756 (2007).   DOI   ScienceOn
22 K. Lin, J. Chang, Y. Zhu, W. Wu, G. Cheng and Y. Zheng, Cryst. Growth Des., 9, 177 (2009).   DOI   ScienceOn
23 I. S. Neira, Y. V. Kolen’ko, O. I. Lebedev, G. V. Tendeloo, H. S. Gupta, F. Guitian and M. Yoshimura, Cryst. Growth Des., 9, 466 (2009).   DOI   ScienceOn
24 T. Kobayashi, S. Ono, S. Hirakura, Y. Oaki and H. Imai, Cryst. Eng. Comm., 14, 1143 (2012).   DOI
25 K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim and S. J. Cho, Mat. Lett., 16, 43 (2009).
26 M. Kurkcu, M. E. Benlidayi, B. Cam and Y. Sertdemir, J. Oral Implantol., 38, 519 (2012).   DOI   ScienceOn
27 R. Murugan and K. P. Rao, Trends Biomater. Artif. Organs, 16, 43 (2002).
28 K. S. Vecchio, X. Zhang, J. B. Massie, M. Wang and C. W. Kim, Acta Biomater., 6, 910 (2007).
29 X. Zhang and K. S. Vecchio, Mat. Sci. Eng. C, 26, 1445 (2006).   DOI   ScienceOn
30 S. Bramhe, T. N. Kim, A. Balakrishnan and M. C. Chu, Mat. Lett., 135, 195 (2014).   DOI   ScienceOn
31 E. Lester, S. V. Y. Tang, A. Khlobystov, V. L. Rose, L. Buttery and C. J. Roberts, Cryst. Eng. Comm., 15, 3256 (2013).   DOI   ScienceOn
32 S. Bramhe, J. K. Ryu, M. C. Chu, A. Balakrishnan and T. N. Kim, Korean J. Mater. Res., 24, 700 (2014).   DOI   ScienceOn
33 B. Viswanath and N. Ravishankar, Biomaterials, 29, 4855 (2008).   DOI   ScienceOn