• Title/Summary/Keyword: Density-based Method

Search Result 2,301, Processing Time 0.026 seconds

3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm (SIMP 기반 절점밀도법에 의한 3 차원 위상최적화)

  • Kim, Cheol;Fang, Nan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

Density-based Outlier Detection for Very Large Data (대용량 자료 분석을 위한 밀도기반 이상치 탐지)

  • Kim, Seung;Cho, Nam-Wook;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.

A study on bandwith selection based on ASE for nonparametric density estimators

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.307-313
    • /
    • 2000
  • Suppose we have a set of data X1, ···, Xn and employ kernel density estimator to estimate the marginal density of X. in this article bandwith selection problem for kernel density estimator is examined closely. In particular the Kullback-Leibler method (a bandwith selection methods based on average square error (ASE)) is considered.

  • PDF

A Performance Enhancement of Osteoporosis Classification in CT images (CT 영상에서 골다공증 판별 방법의 성능 향상)

  • Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1248-1259
    • /
    • 2016
  • Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Chaojun, Xin;Yuanwen, Cai;Yuan, Ren;Yahong, Fan;Yongzhi, Su
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Approximate fuzzy clustering based on a density function (밀도 함수를 이용한 근사적 퍼지 클러스터링)

  • 손세호;권순학;최윤혁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.94-97
    • /
    • 2000
  • We introduce an approximate fuzzy clustering method, which is simple but computationally efficient, based on density functions in this paper. The density functions are defined by the number of data within the predetermined interval. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

A Support Vector Method for the Deconvolution Problem

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.451-457
    • /
    • 2010
  • This paper considers the problem of nonparametric deconvolution density estimation when sample observa-tions are contaminated by double exponentially distributed errors. Three different deconvolution density estima-tors are introduced: a weighted kernel density estimator, a kernel density estimator based on the support vector regression method in a RKHS, and a classical kernel density estimator. The performance of these deconvolution density estimators is compared by means of a simulation study.

Research of Adaptive Transformation Method Based on Webpage Semantic Features for Small-Screen Terminals

  • Li, Hao;Liu, Qingtang;Hu, Min;Zhu, Xiaoliang
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.900-910
    • /
    • 2013
  • Small-screen mobile terminals have difficulty accessing existing Web resources designed for large-screen devices. This paper presents an adaptive transformation method based on webpage semantic features to solve this problem. According to the text density and link density features of the webpages, the webpages are divided into two types: index and content. Our method uses an index-based webpage transformation algorithm and a content-based webpage transformation algorithm. Experiment results demonstrate that our adaptive transformation method is not dependent on specific software and webpage templates, and it is capable of enhancing Web content adaptation on small-screen terminals.

Research on the calculation method of sensitivity coefficients of reactor power to material density based on Monte Carlo perturbation theory

  • Wu Wang;Kaiwen Li;Yuchuan Guo;Conglong Jia;Zeguang Li;Kan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4685-4694
    • /
    • 2023
  • The ability to calculate the material density sensitivity coefficients of power with respect to the material density has broad application prospects for accelerating Monte Carlo-Thermal Hydraulics iterations. The second-order material density sensitivity coefficients for the general Monte Carlo score have been derived based on the differential operator sampling method in this paper, and the calculation of the sensitivity coefficients of cell power scores with respect to the material density has been realized in continuous-energy Monte Carlo code RMC. Based on the power-density sensitivity coefficients, the sensitivity coefficients of power scores to some other physical quantities, such as power-boron concentration coefficients and power-temperature coefficients considering only the thermal expansion, were subsequently calculated. The effectiveness of the proposed method is demonstrated in the power-density coefficients problems of the pressurized water reactor (PWR) moderator and the heat pipe reactor (HPR) reflectors. The calculations were carried out using RMC and the ENDF/B-VII.1 neutron nuclear data. It is shown that the calculated sensitivity coefficients can be used to predict the power scores accurately over a wide range of boron concentration of the PWR moderator and a wide range of temperature of HPR reflectors.