• Title/Summary/Keyword: Density of crack

Search Result 399, Processing Time 0.032 seconds

Analysis of Induction Heating according to Coil Shapes on the V-groove Weld Joint (V-groove를 가진 모재에서 코일 형상에 따른 유도가열 해석)

  • Ahn, Soo Deok;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In order to prevent crack in thick weld zones, the preheating process such as induction and gas torch heating needs to be applied. Among them induction heating is the most effective heat source because it has rare thermal effect and very rapid heating characteristics. In this paper, when the induction heating method is used to improve arc welding, the temperature distribution and magnetic field density of the welding zones are analyzed by simultaneously solving heat transfer and electromagnetic field equation. In particular, cone and flat type coils are designed and induction heating effects of each type are compared to identify heating characteristics on a V-groove weld joint. As a result, a cone shape coil is more efficient in the preheating process. When induction heating and arc welding system is designed for thick plate with V-groove weld joint, the results in this paper could be applied.

Mechanical Damage Behavior of Single Crystalline Silicon by Scratching Test (Scratching Test에 의한 단결정 실리콘의 기계적 손상거동)

  • 김현호;정성민;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.104-108
    • /
    • 2003
  • COF(Coefficient Of Friction), AE(Acoustic Emission), micro-cracks and crystal structure of the single crystalline silicon were investigated according to the induced normal load during scratching test. Scratching tests were performed with the loading rate of 100 N/min and various scratching speeds of 1, 3, 6, 10 mm/min from 0 up to 30 N of the maximum normal load. In consequence, COF, AE and crack density were observed to increase with increasing normal load or increasing scratching speed. Phase transformations from the silicon diamond structure to other structures were observed in the scratched grooves for the slow scratching speeds using micro-Raman spectroscopy.

Automatic Detection and Characterization of Cracked Constituent Particles/Inclusions in Al-Alloys under Uniaxial Tensile Loading (인장하중에 의한 Al 합금내 크랙형성 복합상의 자동검출 및 정량분석)

  • Lee, Soon Gi;Jang, Sung Ho;Kim, Yong Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The detailed quantitative microstructural data on the cracking of coarse constituent particles in 7075 (T651) series wrought Al-alloys have been studied using the utility of a novel digital image processing technique, where the particle cracks are generated due to monotonic loading. The microstructural parameters such as number density, volume fraction, size distribution, first nearest neighbor distribution, and two-point correlation function have been quantitatively characterized using the developed technique and such data are very useful to verify and study the theoretical models for the damage evolution and fracture of Al-alloys. The data suggests useful relationships for damage modeling such as a linear relationship between particle cracking and strain exists for the uniaxial tensile loading condition, where the larger particles crack preferentially.

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Development of Fluorine-free MOD Precursor Solution for fabricating REBCO Superconducting Films (REBCO 초전도 박막제조를 위한 Fluorine-free MOD 전구체 용액 개발)

  • Kim, Byeong-Joo;Lim, Sun-Weon;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.152-157
    • /
    • 2006
  • New precursor solution with dichloroacetic acid (DCA) was developed for fabricating high $J_c$ REBCO film. DCA based-precursor solution was coated on $LaAlO_3$(001) substrate by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature were controlled in order to obtain a good epitaxial film. The film with thickness of 0.5 micrometer was obtained by single coating and no crack was observed at calcined films. Oxygen partial pressure was controlled in the range of $100{\sim}1,000$ ppm and conversion heat treatment was carried out at the temperature range of $705-765^{\circ}C$. A critical transition temperature ($T_c$) of 90 K and a critical transport current density ($J_c$) of $>0.5\;MA/cm^2$ (77 K and self-field) were obtained for the GdBCO film. It is thought that fluorine-free MOD solution using DCA is promising precursor solution for fabricating high quality REBCO films.

  • PDF

Fabrication of YBCO films in MOD processing using F-free Y & Cu precursor solution (F-free Y & Cu 전구용액을 이용한 YBCO 박막 제조)

  • Kim, Young-Kuk;Yoo, Jai-Moo;Ko, Jae-Woong;Chung, Kook-Chae;Kim, Young-Jun;Han, Bong-Soo;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.15-18
    • /
    • 2006
  • A new precursor solution wilt low fluorine content was synthesized for MOD processing of coated conductors. In this study, the precursor solution for MOD processing was synthesized using F-free yttrium and copper precursor. It was shown that crack-free and uniform precursor films were formed after calcination in humidified oxygen atmosphere. Less than 2 hours were required to finish the calcination process. The relatively gradual weight loss during the calcination process is attributed to the feasibility of fast calcination profile. The calcined precursor film was converted to a YBCO film without any secondary phases after annealing in wet $Ar/O_2$ atmosphere. Fully converted film shows uniform microstructure and high critical current density. $(Jc=2.7MA/cm^2) $.

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet;Benkhedda, A.;Adda bedia, E.A.;Boukert, B.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.315-331
    • /
    • 2019
  • The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer Block in a High-level Nuclear Waste Repository (고준위폐기물처분장 내 공학규모의 균질 완충재 블록 성형특성 및 현장적용성 분석)

  • Kim, Jin-Seop;Yoon, Seok;Cho, Won-Jin;Choi, Young-Chul;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.123-136
    • /
    • 2018
  • The objective of this study is to propose a new methodology to fabricate a reliable engineering-scale buffer block, which shows homogeneous and uniform distribution in buffer block density, for in-situ experiments. In this study, for the first time in Korea, floating die press and CIP (Cold Isostatic Press) are applied for the manufacture of an engineering-scale bentonite buffer. The optimized condition and field applicability are also evaluated with respect to the method of manufacturing the buffer blocks. It is found that the standard deviation of the densities obtained decreases noticeably and that the average dry density increases slightly. In addition, buffer size is reduced by about 5% at the same time. Through the test production, it is indicated that the stress release phenomenon decreases after the application of the CIP method, which leads to a reduction in crack generation on the surface of the buffer blocks over time. Therefore, it is confirmed that the production of homogeneous buffer blocks on industrial scale is possible using the method suggested in this study, and that the produced blocks also meet the design conditions for dry density of buffer blocks in the AKRS (Advanced Korea Reference Disposal System of HLW).

A Study on Aggregate Gradation of 10 mm Dense-graded Asphalt Mixture using Slag Aggregate (슬래그 골재를 사용한 10 mm 밀입도 아스팔트 혼합물의 골재입도 기준 연구)

  • Jo, Shin Haeng;Kim, Kyungnam;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1367-1375
    • /
    • 2015
  • The purpose of this paper is to suggest 10 mm aggregate specification for thin layer asphalt pavement using steel slag. Aggregate gradations of conventional dense-graded asphalt mixtures were made by fuller's model, whereas 10 mm dense-graded asphalt mixture was obtained tender mix due to close to the maximum density line. The proposed aggregate gradation specification was made to have enough VMA and well-interlocking refer to foreign standards. The correlation between the proposed aggregate gradation and the properties of mixtures were analyzed using Gradation Ratio (GR) and Compacted Aggregate Density (CAD). The CAD index has a high $R^2$ of 0.86-0.99 because the CAD index is able to reflect various aggregate properties. As the results of evaluation by CAD index the proposed aggregate gradation provides more reliable stability and VMA. The percent passing (%) of aggregate size smaller than 0.3 mm was limited 10% or more for improving crack resistance. This limitation increased for 15% of the asphalt mixture's toughness.