Automatic Detection and Characterization of Cracked Constituent Particles/Inclusions in Al-Alloys under Uniaxial Tensile Loading

인장하중에 의한 Al 합금내 크랙형성 복합상의 자동검출 및 정량분석

  • Lee, Soon Gi (Plate Research Group, POSCO Technical Research Laboratories) ;
  • Jang, Sung Ho (Plate Research Group, POSCO Technical Research Laboratories) ;
  • Kim, Yong Chan (Non-ferrous Refining Project Team, Research Institute of Industrial Science & Technology)
  • 이순기 (포스코기술연구소 후판연구그룹) ;
  • 장성호 (포스코기술연구소 후판연구그룹) ;
  • 김용찬 (포항산업과학연구원 비철제련연구단)
  • Received : 2008.09.01
  • Published : 2009.01.28

Abstract

The detailed quantitative microstructural data on the cracking of coarse constituent particles in 7075 (T651) series wrought Al-alloys have been studied using the utility of a novel digital image processing technique, where the particle cracks are generated due to monotonic loading. The microstructural parameters such as number density, volume fraction, size distribution, first nearest neighbor distribution, and two-point correlation function have been quantitatively characterized using the developed technique and such data are very useful to verify and study the theoretical models for the damage evolution and fracture of Al-alloys. The data suggests useful relationships for damage modeling such as a linear relationship between particle cracking and strain exists for the uniaxial tensile loading condition, where the larger particles crack preferentially.

Keywords

Acknowledgement

Supported by : 미국 국립과학재단

References

  1. F. A. McClintock, Ductility, ASM, Metals Park, Ohio, p.105 (1968)
  2. T. B. Cox and J. R. Low, Met. Meter. Trans. 5A, 145 (1974)
  3. J. Gurland and J. Plateau, Trans ASM 56, 442 (1963)
  4. E. N. Pan, C. S. Lin, and C.R. Loper, American Foundry Soc. Trans. 98, 735 (1990)
  5. C. H. Caceres and J. R. Griffiths, Acta Metall. et Mater. 44, 25 (1996) https://doi.org/10.1016/1359-6454(95)00171-6
  6. M.D. Dighe, A.M. Gokhale, and Mark Horstemeyer, Met. Meter. Trans. 29A, 905 (1998) https://doi.org/10.1007/s11661-998-0281-0
  7. Ki Jong Park and Chong Soo Lee, J. Kor. Inst. Met. & Mater. 34, 1163 (1996)
  8. Sung Gyu Pyo, Jae Joong Kim, and Nack J . Kim, J. Kor. Inst. Met. & Mater. 37, 904 (1999)
  9. A. K. Balasundaram, A.M. Gokhale, S. Graham, and M. F. Horstemeyer, Mater. Sci. Eng. A, 355, 368 (2003) https://doi.org/10.1016/S0921-5093(03)00103-5
  10. H. Agarwal, A. M. Gokhale, S. Graham, and M. F. Horstemeyer, Met. Meter. Trans. 33A, 3443 (2002) https://doi.org/10.1007/s11661-002-0331-y
  11. A. S. Argon, J. Im, and R. Safoglu, Met. Meter. Trans. 6A, 825 (1975) https://doi.org/10.1007/BF02672306
  12. M. F. Horstemeyer and A.M. Gokhale, Int. J. Sod. Str. 36, 5029(1999) https://doi.org/10.1016/S0020-7683(98)00239-X
  13. M. F. Horstemeyer, J. Lathrop, A.M. Gokhale, and M.D. Dighe, Theoretical and App. Frac. Mech. 33, 31 (2000) https://doi.org/10.1016/S0167-8442(99)00049-X
  14. M. F. Horstemeyer, K. A. Gall, K. Dolan, J. Haskins, A.M. Gokhale, and M.D. Dighe, Bars, Theoretical and App. Frac. Mech. 39, 23 (2003) https://doi.org/10.1016/S0167-8442(02)00136-2
  15. James Harris, M.S. Thesis, p.92, Georgia Institute of Technology (2005)