DOI QR코드

DOI QR Code

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material

공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황

  • Diaz, Melvin B. (Department of Ocean Energy & Resources Engineering, Korea Maritime and Ocean University (KMOU)) ;
  • Kim, Joo Yeon (Department of Ocean Energy & Resources Engineering, Korea Maritime and Ocean University (KMOU)) ;
  • Kim, Kwang Yeom (Department of Ocean Energy & Resources Engineering, Korea Maritime and Ocean University (KMOU)) ;
  • Lee, Changsoo (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jin-Seop (Korea Atomic Energy Research Institute (KAERI))
  • 멜빈 (한국해양대학교 해양에너지자원공학과) ;
  • 김주연 (한국해양대학교 해양에너지자원공학과) ;
  • 김광염 (한국해양대학교 해양에너지자원공학과) ;
  • 이창수 (한국원자력연구원) ;
  • 김진섭 (한국원자력연구원)
  • Received : 2021.11.10
  • Accepted : 2021.11.22
  • Published : 2021.12.31

Abstract

Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

고준위방사성폐기물 처분장에서 벤토나이트는 공학적방벽재로서 주로 사용되어지는 재료로서 열-수리-역학-화학적 복합적 거동을 겪게 된다. 본 보고에서는 이러한 벤토나이트에 대한 X선 단층촬영 기반의 분석 및 특성화와 관련된 최근 연구 및 기술동향을 고찰하였다. X선 단층촬영 기반 벤토나이트의 평가는 분말형태와 펠렛형태에 대해 적용된 내용을 다루었다. X선 이미징을 통해 마이크로스케일에서 입자의 정보를 추출할 수 있으며 벤토나이트의 불균질성을 야기할 수 있는 펠렛 내부의 균열을 검출할 수 있다. 수화조건하에서 분말과 펠렛이 혼합된 벤토나이트에 대한 X선 분석을 통해 실험과정에서 발생하는 불균질 영역을 특정하고 모니터링이 가능하다. 펠렛으로만 구성된 벤토나이트가 펠렛과 파우더의 혼합으로 이루어진 벤토나이트보다 더 빨리 팽윤되는 특성이 보고되기도 하였다. 벤토나이트의 입자와 블록에 존재하는 작은 균열들이 건조-수화 조건하에서 각각 균열의 닫힘과 열림이 발생하는 것도 확인되었다. 전문 소프트웨어를 이용하여 시공간 단층 이미지로부터 변형률분포를 추출한 경우도 있었다. 최근의 연구들에서는 X선 단층촬영 기술을 이용하여 시간경과에 따른 벤토나이트의 건조밀도, 함수비, 입자의 이동 등을 평가하기도 하였다. 또한, 수화과정에 온도 조건을 고려하여 시간에 따른 재료의 전체 밀도 및 국부적 밀도 변화를 관찰하는 연구도 진행되고 있다.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT)(No. 2021M2E1A1085197 & No. 2021R1A2C2011634).

References

  1. Bernachy-Barbe, F., 2021. Homogenization of bentonite upon saturation: Density and pressure fields. Applied Clay Science, 209, pp.106122. https://doi.org/10.1016/j.clay.2021.106122
  2. Bernachy-Barbe, F., Conil, N., Guillot, W. and Talandier, J., 2020. Observed heterogeneities after hydration of MX-80 bentonite under pellet/powder form. Applied Clay Science, 189, pp.105542. https://doi.org/10.1016/j.clay.2020.105542
  3. Booker, J.R., Brachman, R., Quigley, R.M. and Rowe, R.K., 2004. Barrier systems for waste disposal facilities. Crc Press.
  4. Cnudde, V. and Boone, M.N., 2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, pp.1-17. https://doi.org/10.1016/j.earscirev.2013.04.003
  5. Chang, C., Borglin, S., Chou, C., Kneafsey, T., Wu, Y., Zheng, L., Nakagawa, S., Xu, H., Peruzzo, L. and Birkholzer, J., 2021, June. Experimental Study of Coupled Thmc Processes in Bentonite Buffer for Geologic Disposal of Radioactive Waste. In 55th US Rock Mechanics/Geomechanics Symposium, virtual.
  6. Chen, L., Li, K. and Yang, D., 2020. Experimental Investigation on Drying and Wetting of GMZ Bentonite Using X-Ray Tomography and Volumetric Digital Image Correlation Technique. Advances in Civil Engineering, vol. 2020, Article ID 6634246, 8 pages.
  7. Cho, W.J., Kim, J.S. and Kim, G.Y., 2019. Effects of excavation damaged zone on thermal analysis of multi-layer geological repository. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 17(1), pp.75-94. https://doi.org/10.7733/jnfcwt.2019.17.1.75
  8. Frost, E.B., 1896. Experiments on the X-rays. Science, 3(59), pp.235-236. https://doi.org/10.1126/science.3.59.235
  9. Ketcham, R.A. and Carlson, W.D., 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27(4), pp.381-400. https://doi.org/10.1016/S0098-3004(00)00116-3
  10. Marty, N.C., Fritz, B., Clement, A. and Michau, N., 2010. Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository. Applied Clay Science, 47(1-2), pp.82-90. https://doi.org/10.1016/j.clay.2008.10.002
  11. Mees, F., Swennen, R., Van Geet, M. and Jacobs, P., 2003. Applications of X-ray computed tomography in the geosciences. Geological Society, London, Special Publications, 215(1), pp.1-6. https://doi.org/10.1144/GSL.SP.2003.215.01.01
  12. Molinero-Guerra, A., Mokni, N., Cui, Y.J., Delage, P., Tang, A.M., Aimedieu, P., Bernier, F. and Bornert, M., 2020. Impact of initial structural heterogeneity on long-term swelling behavior of MX80 bentonite pellet/powder mixtures. Canadian Geotechnical Journal, 57(9), pp.1404-1416. https://doi.org/10.1139/cgj-2018-0301
  13. Molinero-Guerra, A., Aimedieu, P., Bornert, M., Cui, Y.J., Tang, A.M., Sun, Z., Mokni, N., Delage, P. and Bernier, F., 2018. Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography. Applied Clay Science, 165, pp.164-169. https://doi.org/10.1016/j.clay.2018.07.043
  14. Molinero-Guerra, A., Mokni, N., Delage, P., Cui, Y.J., Tang, A.M., Aimedieu, P., Bernier, F. and Bornert, M., 2017. In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite. Applied Clay Science, 135, pp.538-546. https://doi.org/10.1016/j.clay.2016.10.030
  15. Saba, S., Barnichon, J.D., Cui, Y.J., Tang, A.M. and Delage, P., 2014. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), pp.126-132. https://doi.org/10.1016/j.jrmge.2014.01.006
  16. Sena, C., Salas, J. and Arcos, D., 2010. Aspects of geochemical evolution of the SKB near field in the frame of SR-Site.
  17. Tan, Y., Zhang, H., Zhang, T., Zhang, G., He, D. and Ding, Z., 2021. Anisotropic hydro-mechanical behavior of full-scale compacted bentonite-sand blocks. Engineering Geology, 287, pp.106093. https://doi.org/10.1016/j.enggeo.2021.106093
  18. Tomioka, S., Kozaki, T., Takamatsu, H., Noda, N., Nisiyama, S., Kozai, N., Suzuki, S. and Sato, S., 2010. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT. Applied Clay Science, 47(1-2), pp.65-71. https://doi.org/10.1016/j.clay.2008.09.001
  19. Villar, M.V., Iglesias, R.J., Gutierrez-Alvarez, C. and Carbonell, B., 2021. Pellets/block bentonite barriers: Laboratory study of their evolution upon hydration. Engineering Geology, 292, p.106272. https://doi.org/10.1016/j.enggeo.2021.106272
  20. Xiao, X., Fusseis, F. and De Carlo, F., 2012, October. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source. Proc. SPIE 8506, Developments in X-Ray Tomography VIII, pp. 85060K.