DOI QR코드

DOI QR Code

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des etudes Spatiales, Universite de Blida1) ;
  • Benkhedda, A. (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des etudes Spatiales, Universite de Blida1) ;
  • Adda bedia, E.A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Boukert, B. (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des etudes Spatiales, Universite de Blida1)
  • Received : 2018.04.07
  • Accepted : 2019.03.15
  • Published : 2019.07.25

Abstract

The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

Keywords

References

  1. Adda bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates with transverse cracking", J. Mater. Proc. Technol., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002.
  2. Adolfsson, E. and Gudmundson, P. (1997), "Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks", Int. J. Sol. Struct., 34(16), 2035-2060. https://doi.org/10.1016/S0020-7683(96)00156-4.
  3. Amara, K.H., Bouazza, M., Antar, K. and Megueni, A. (2014), "Evaluation of the stiffness of composite materials with hygrothermal conditions", Leona. J. Sci., 25, 57-64.
  4. Benkhedda, A., Tounsi, A. and Adda Bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
  5. Berthelot, J.M., Leblonb, P., El Mahi, A. and Le Core, J.F. (1996), "Transverse cracking of cross ply laminates: Part I. Analysis", Compos. Part A Appl. Sci. Manuf., 27(10), 989-1001. https://doi.org/10.1016/1359-835X(96)80002-A.
  6. Bouazza, M., Tounsi, A., Benzair, A. and Adda-bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(4), 1116-1123. https://doi.org/10.1016/j.matdes.2006.02.003.
  7. Chamis, C.C. (1983), "Simplified composite micromechanics equations of hygral, thermal, and mechanical properties", SAMPE Quart., 15, 14-23.
  8. Crank, J. (1975), The Mathematical Theory of Diffusion, Oxford University Press, Oxford, U.K.
  9. Hallett, S.R., Jiang, W.G., Khan, B. and Wisnom, R. (2008), "Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens", Compos. Sci. Technol., 68(1), 80-89. https://doi.org/10.1016/j.compscitech.2007.05.038.
  10. Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", Air Force Materials Lab, (AFML-TR).
  11. Khodjet-kesba, M., Adda Bedia, E.A., Benkhedda, A. and Boukert B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [${\theta}m$/90n]s composite laminates", Steel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057.
  12. Khodjet-Kesba, M., Adda Bedia, E.A., Benkhedda, A., Boukert, B. and Rezoug, T (2016), "The influence of hygrothermal effects on the cross-ply composite laminate with transverse cracking in transient mode", Mech. Indus., 18(1), 102-110. https://doi.org/10.1051/meca/2016004.
  13. Landolt, B. (1969), Zahkebwerte and Funktionen, Springer-Velag.
  14. Loos, A.C. and Springer, G.S. (1981), Environmental Effects on Composite Materials, in Moisture Absorption of Graphite-Epoxy Composition Immersed in Liquids and in Humid Air, 34-50.
  15. Lundgren, J.E. and Gudmundson, R. (1998), "A model for moisture absorption in cross-ply composite laminates with matrix cracks", J. Compos. Mater., 32(24), 2226-2253. https://doi.org/10.1177%2F002199839803202403. https://doi.org/10.1177/002199839803202403
  16. Lundgren, J.E. and Gudmundson, R. (1999), "Moisture absorption in glass-fibre/epoxy laminates with transverse matrix cracks", Compos. Sci. Technol., 59(13), 1983-1991. https://doi.org/10.1016/S0266-3538(99)00055-X.
  17. Maurice, F.A. (2001), "Engineering composite materials", EMC471, The Pennsylvania State University, Pennsylvania, U.S.A.
  18. Ogihara, S. and Takeda, N. (1995), "Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates", Compos. Sci. Technol., 54(4), 395-404. https://doi.org/10.1016/0266-3538(95)00084-4.
  19. Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda Bedia, E.A. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Indus., 12(5), 395-398.
  20. Shen, C.H. and Springer, G.S., (1981), Moisture Absorption and Desorption of Composite Materials, in Environmental Effects on Composites Materials, Technomic Publishing Co., Lancaster, Pennsylvania, U.S.A.
  21. Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London, U.K.
  22. Takeda, N. and Ogihara, S. (1994), "Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply lamainates", Compos. Sci. Technol., 52, 309-318. https://doi.org/10.1016/0266-3538(94)90166-X.
  23. Talerja, R. (1986), "Stiffness properties of composite laminates with matrix cracking and interior delamination", Eng. Fract. Mech., 25(5-6), 751-762. https://doi.org/10.1016/0013-7944(86)90038-X.
  24. Tounsi, A., Adda bedia, E.L. and Benachour, A. (2005), "A new computational method for prediction of transient hygroscopic stresses during moisture desorption in laminated composite plates with different degrees of anisotropy", Int. J. Therm. Comp. Mater., 18(1), 37-58. https://doi.org/10.1177%2F0892705705041156. https://doi.org/10.1177/0892705705041156
  25. Zhang, H. and Minnetyan, L, (2006), "Variational analysis of transverse cracking and local delamination in $[{\theta}_m/90_n]_s$ lamiantes", Int. J. Solids Struct., 43(22-23), 7061-7081. https://doi.org/10.1016/j.ijsolstr.2006.03.004.
  26. Zubillaga, L., Turon, A., Renart, J., Coasta, J. and Linde, P. (2015), "An experimental study on matrix crack induced delamination in composite laminates", Compos. Struct., 127, 10-17. https://doi.org/10.1016/j.compstruct.2015.02.077.