• 제목/요약/키워드: Density based Clustering

검색결과 167건 처리시간 0.032초

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • 제6권1호
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.

무선 센서 네트워크에서 균등한 클러스터 밀도를 고려한 토큰 기반의 클러스터링 알고리즘 (A Token Based Clustering Algorithm Considering Uniform Density Cluster in Wireless Sensor Networks)

  • 이현석;허정석
    • 정보처리학회논문지C
    • /
    • 제17C권3호
    • /
    • pp.291-298
    • /
    • 2010
  • 무선 센서 네트워크에서 센서노드의 수명은 배터리에 의해 제한되므로 에너지는 가장 중요한 고려사항이다. 클러스터링은 네트워크의 에너지 소비를 효율적으로 관리하는데 사용되는 방법 중 하나이며, LEACH는 대표적인 클러스터링 알고리즘이다. LEACH는 센서 노드들의 에너지 소비를 공평하게 분산시키기 위해 에너지 소모적 기능을 하는 클러스터 헤드를 매 라운드마다 무작위로 순환시키는 방법을 사용하고 있다. 클러스터 헤드의 무작위 선정은 매 라운드 최적의 클러스터 헤드 수를 보장해주지 못한다. 그리고 밀도가 높은 클러스터에 위치한 클러스터 헤드는 과부하 상태가 된다. 본 논문에서는 클러스터 헤드의 수를 보장하기 위한 토큰 기반의 클러스터 헤드 선정 알고리즘과 균등한 밀도의 클러스터 형성을 위한 클러스터 선택 알고리즘을 제안한다. 시뮬레이션을 통하여 제안하는 알고리즘이 LEACH 보다 네트워크 수명이 9.3%정도 연장됨을 보여주었다.

클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석 (Customer Load Pattern Analysis using Clustering Techniques)

  • 유승형;김홍석;오도은;노재구
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

최대 전송횟수 제한 및 사용자 밀집도 변화에 따른 사용자 클러스터링 알고리즘 별 D2D 광고 확산 성능 분석 (Performance Analysis of User Clustering Algorithms against User Density and Maximum Number of Relays for D2D Advertisement Dissemination)

  • 한세호;김준선;이호원
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.721-727
    • /
    • 2016
  • 본 논문에서는 기존 알고리즘에서의 특정 D2D 사용자 분포에 대한 광고확산 효율 저하 문제를 해결하기 위해, D2D 통신 네트워크에서 광고확산 효율을 개선하는 광고확산 알고리즘 기반의 Modified Single Linkage, K-means, 그리고 Gaussian mixture model을 적용한 Expectation Maximization 클러스터링 알고리즘의 적용이 제안되었다. 제안된 클러스터링 알고리즘들을 통해 광고 확산을 위한 목표지역들이 목표그룹으로 클러스터링되고 이를 통해 D2D 전송 단말과 수신 단말 사이의 거리를 기반으로 광고 확산 경로 설정 알고리즘과 릴레이 단말 설정 알고리즘이 적용되어 광고가 연속적으로 전파된다. 본 논문에서는 MATLAB 시뮬레이션을 통해 각 알고리즘의 최대 D2D 릴레이 제한 수와 목표지역과 비목표지역의 사용자 밀집도의 비에 따른 성능을 비교 분석한다.

에너지 효율성 향상을 위한 DBSCAN 기반 기지국 모드 제어 알고리즘 (DBSCAN-based Energy-Efficient Algorithm for Base Station Mode Control)

  • 이호원;이원석
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1644-1649
    • /
    • 2019
  • 이동통신 시스템의 급격한 발전과 함께 다양한 모바일 융합서비스가 등장하고 있으며 이에 따른 데이터 트래픽도 폭발적으로 증가하고 있다. 이러한 급증하는 디바이스를 지원하기 위한 기지국의 수도 함께 증가하고 있기 때문에 통신사업자의 관점에서는 이러한 네트워크를 통해 소모되는 에너지 소모량을 줄이는 것이 매우 중요한 이슈 중 하나이다. 따라서 본 논문에서는 대표적인 사용자 밀집도 기반 클러스터링 기술 중 하나인 DBSCAN 알고리즘을 적용하여 사용자가 밀집된 영역을 추출하고 이렇게 추출된 서브네트워크 별로 씨닝 과정을 적용하여 기지국의 모드를 효율적으로 제어한다. 시뮬레이션을 통해 면적 당 수율과 에너지 효율 측면에서 제안 방안이 기존 방안 대비 높은 성능 결과를 가지는 것을 보인다.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

웨이브렛 변환과 퍼지 군집화를 활용한 문자추출 (Character Extraction Using Wavelet Transform and Fuzzy Clustering)

  • 황중원;황재호
    • 대한전자공학회논문지SP
    • /
    • 제44권4호통권316호
    • /
    • pp.93-100
    • /
    • 2007
  • 웨이브렛 변환에 근거하여 디지털영상으로부터 문자를 처리하는 새로운 접근법을 제시한다. 대상은 각필(刻筆)문자 영상이다. 각필문자에는 형성된 결상에 유사성이 존속하며 배경부분과 함께 서로 다른 준위의 다해상도 특성들로 분해된다는 점을 착안하였다. 우선 Daubechies 웨이브렛을 적용하여 영상을 부대역들로 분해한다. 저주파 부대역은 분할처리와 FCM근거 퍼지 군집분리 및 면적기반 영역처리기법을 적용하여 문자특성을 추출한다. 고주파 부대역들에는 이동창을 설정하고, 이동창의 국부 에너지를 추정하여 고주파 특성들을 활성화한다. 이들 특성들은 조합되어 역웨이브렛 과정을 통해 본래 영상 상태로 복원되고 배경부분이 배제된 문자를 추출한다. 실험 결과는 제안된 기법의 효과를 보이고 있다.

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병 (Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm)

  • 한진우;전성해;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.517-524
    • /
    • 2004
  • 1960년대 퍼지 이론이 소개된 이후 데이터 마이닝을 포함한 기계 학습 분야의 군집화 작업에서 퍼지 이론이 폭넓게 사용되었다. 퍼지 C-평균 알고리즘은 가장 많이 사용되는 퍼지 군집화 알고리즘이다. 이 알고리즘은 하나의 데이터 개체가 서로 다른 소속 정도를 가지고 각 군집에 할당될 수 있도록 한다. 퍼지 C-평균 알고리즘도 K-평균 알고리즘과 같은 일반적인 군집화 알고리즘과 마찬가지로 초기 군집수와 군집 중심의 위치에 의해 최종 군집 결과의 성능 차이가 나타난다. 군집화를 위한 이러한 초기 설정은 주관적이며 이 때문에 적절치 못한 결과를 얻게 될 수도 있다. 본 논문에서는 이 문제를 해결할 수 있는 방법으로 주어진 학습 데이터의 속성을 기반으로 한 초기 군집수와 군집 중심을 결정하는 개선된 밀도 기반의 퍼지 C-평균 알고리즘을 제안하였다. 제안 방법은 격자를 사용하여 초기 군집 중심의 위치와 군집수를 결정하였다. 기존에 많이 이용되었던 객관적인 기계 학습 데이터를 이용하여 제안 알고리즘의 성능비교를 수행하였다.

공간 태그된 트윗을 사용한 밀도 기반 관심지점 경계선 추정 (Density-Based Estimation of POI Boundaries Using Geo-Tagged Tweets)

  • 신원용;둥부도
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.453-459
    • /
    • 2017
  • 사용자들은 그들의 관심이 관심지점 (POI: Point-of-Interest)과 관련이 있다는 사실을 언급하기 위해 위치 기반 소셜 네트워크에 체크인하거나 그들의 상태를 올리는 경향이 있다. 관심지역 (AOI: Area-of-Interest)을 찾는 기존 연구는 대부분 위치 기반 소셜 네트워크로부터 수집된 공간 태그된 사진과 함께 밀도 기반 군집화 기법을 사용하여 수행되었다. 반면, 본 연구에서는 POI 중심을 포함한 하나의 군집에 해당하는 POI 경계선을 추정하는 데에 초점을 맞춘다. 트위터 사용자들로부터의 공간 태그된 트윗을 사용하여 POI 중심으로부터 도달할 수 있는 적절한 반경을 찾음으로써 POI 경계선을 추정하는 밀도 기반 저복잡도 두 단계 방법을 소개한다. 두 단계 밀도 기반 추정을 통해 선택된 공간 태그의 convex hull로써 POI 경계선을 추정하는데, 각 단계에서 다른 크기의 반경 증가를 가정하여 진행한다. 제안한 방법은 기본 밀도 기반 군집화 방법보다 계산 복잡도 측면에서 우수한 성능을 가짐을 보인다.