• 제목/요약/키워드: Densification Behavior

검색결과 274건 처리시간 0.023초

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

기계적합금화법에 의해 제조된 W-20wt.%Cu복합재의 치밀화 거동 (Densification Behavior of W-20wt.% Cu Composite Materials Fabricated by Mechanical Alloying Method)

  • 김보수;안인섭
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.627-632
    • /
    • 1995
  • 고출력 IC회로의 방열재료 및 전기접점재료로 이용되고 있는 W-Cu복합재료를 기계적합금화법으로 제조하였다. 기계적합금화한 분말을 300MPa로 폭 16mm, 높이 4mm의 원반형으로 제조하였다. 소결은 120$0^{\circ}C$에서 140$0^{\circ}C$까지 수소분위기에서 행하였다. 이렇게 제조된 시편의 절단된 면을 연마하여 SEM으로 관찰하였다. 균질한 W-Cu복합재료를 10시간 기계적합금화를 행한 후에 얻을 수 있었고, 133$0^{\circ}C$에서 1시간 소결한 시편의 경우 거의 99%에 가까운 치밀한 조직을 얻을 수 있었다. 또한 기계적합금화시간이 증가함에 따라서 Fe의 혼입은 직선적으로 증가하였으며, 이로 인한 금속간화합물상의 형성은 W입자 성장을 방해하고 경도를 증가시켰다.

  • PDF

개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석 (Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile)

  • 이준호;지수빈;이기철;김동욱
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.67-77
    • /
    • 2017
  • 본 연구에서는 콘 장비를 강관말뚝 중공에 설치함에 따른 말뚝의 거동을 분석하기 위해 축소 모형실험을 진행하였다. 콘 장비를 항타하여 설치 할 경우 먼저 강관 내부에 유입되는 관내토의 높이를 수치상으로 확인 할 수 있으며, 이를 통해 플러깅을 예측하여 플러깅에 따른 말뚝의 거동을 분석 할 수 있다. 또한 물리적인 항타 에너지로 지반의 강성과 강도를 증가 시켜 지지력을 상승 시킬 것으로 기대된다. 강사 장치를 이용하여 상대밀도 90%의 지반을 조성하고 거칠기가 다른 두 강관말뚝을 항타높이를 200mm와 500mm로 나누어 근입깊이 600mm까지 설치한다. 그리고 콘 장비의 유무에 따라 총 8가지 케이스를 나누어 말뚝의 지지력을 분석하였다. 말뚝의 항타높이, 말뚝의 거칠기, 콘 장비의 유무에 따른 세 가지 변수 중 항타높이가 약 70%로 지지력에 미치는 영향이 가장 컸으며 다음으로 콘 장비의 유무가 약 40%, 말뚝의 거칠기가 약 21%로 나타났다.

탄소섬유강화 유리복합재료의 제조 및 특성분석 (Fabrication and Characterization of Carbon Fiber Reinforced)

  • 조해석;김상덕;조호진;공선식;최원봉;백용기;김형준;김환
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.601-608
    • /
    • 1992
  • We investigated the influence of several processes, including the preparation of slurry and preform and the heat-treatment of the preform, on the properties of composites to fabricate the carbon-fiber reinforced glass composites having good mechanical properties. Cerander was determined to be the best binder among Cerander, Rhoplex and Elvacite 2045 by the dipping test and the binder within a preform could be completely eliminatd by burning out the specimen under 10-6 Torr at 400$^{\circ}C$ for more than 1h. The fracture behavior of a composite was largely dependent on the uniformity of carbon-fiber distribution within the composite and the heat-treatment condition of the composite. The higher the glass content, the more difficult to obtain uniform distribution of carbon-fiber. As the hot-pressing temperature increased, the densification process of the composite and the formation of pore due to oxidation of carbon fiber occurred competitively. But, above 1000$^{\circ}C$ the latter played a predominant role. We could fabricated the densest 15 vol.% carbon-fiber-content glass composite having the highest toughness and flexural strength of 250 MPa by hot-pressing under 15 MPa at 900$^{\circ}C$ for 30 min.

  • PDF

침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동 (Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion)

  • 손인진;강현수;홍경태;도정만;윤진국
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결 (Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating)

  • 강현수;도정만;윤진국;박방주;손인진
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.

급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질 (Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process)

  • 정인균;박정환;도정만;김기열;우기도;고인용;손인진
    • 대한금속재료학회지
    • /
    • 제46권4호
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

Continuous W-Cu functional gradient material from pure W to W-Cu layer prepared by a modified sedimentation method

  • Bangzheng Wei;Rui Zhou;Dang Xu;Ruizhi Chen;Xinxi Yu;Pengqi Chen;Jigui Cheng
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4491-4498
    • /
    • 2022
  • The thermal stress between W plasma-facing material (PFM) and Cu heat sink in fusion reactors can be significantly reduced by using a W-Cu functionally graded material (W-Cu FGM) interlayer. However, there is still considerable stress at the joining interface between W and W-Cu FGM in the W/W-Cu FGM/Cu portions. In this work, we fabricate W skeletons with continuous gradients in porosity by a modified sedimentation method. Sintering densification behavior and pore characteristics of the sedimented W skeletons at different sintering temperatures were investigated. After Cu infiltration, the final W-Cu FGM was obtained. The results indicate that the pore size and porosity in the W skeleton decrease gradually with the increase of sintering temperature, but the increase of skeleton sintering temperature does not reduce the gradient range of composition distribution of the final prepared W-Cu FGM. And W-Cu FGM with composition distribution from pure W to W-20.5wt.% Cu layer across the section was successfully obtained. The thickness of the pure W layer is about one-fifth of the whole sample thickness. In addition, the prepared W-Cu FGM has a relative density of 94.5 % and thermal conductivity of 185 W/(m·K). The W-Cu FGM prepared in this work may provide a good solution to alleviate the thermal stress between W PFM and Cu heat sink in the fusion reactors.

고밀도 폴리우레탄 폼의 극저온 성능 분석 (Investigation of the Cryogenic Performance of the High Density Polyurethane Foam)

  • 김정현;김정대;김태욱;김슬기;이제명
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.