Browse > Article
http://dx.doi.org/10.1016/j.net.2022.08.002

Continuous W-Cu functional gradient material from pure W to W-Cu layer prepared by a modified sedimentation method  

Bangzheng Wei (School of Materials Science and Engineering, Hefei University of Technology)
Rui Zhou (School of Materials Science and Engineering, Hefei University of Technology)
Dang Xu (School of Materials Science and Engineering, Hefei University of Technology)
Ruizhi Chen (School of Materials Science and Engineering, Hefei University of Technology)
Xinxi Yu (School of Materials Science and Engineering, Hefei University of Technology)
Pengqi Chen (School of Materials Science and Engineering, Hefei University of Technology)
Jigui Cheng (School of Materials Science and Engineering, Hefei University of Technology)
Publication Information
Nuclear Engineering and Technology / v.54, no.12, 2022 , pp. 4491-4498 More about this Journal
Abstract
The thermal stress between W plasma-facing material (PFM) and Cu heat sink in fusion reactors can be significantly reduced by using a W-Cu functionally graded material (W-Cu FGM) interlayer. However, there is still considerable stress at the joining interface between W and W-Cu FGM in the W/W-Cu FGM/Cu portions. In this work, we fabricate W skeletons with continuous gradients in porosity by a modified sedimentation method. Sintering densification behavior and pore characteristics of the sedimented W skeletons at different sintering temperatures were investigated. After Cu infiltration, the final W-Cu FGM was obtained. The results indicate that the pore size and porosity in the W skeleton decrease gradually with the increase of sintering temperature, but the increase of skeleton sintering temperature does not reduce the gradient range of composition distribution of the final prepared W-Cu FGM. And W-Cu FGM with composition distribution from pure W to W-20.5wt.% Cu layer across the section was successfully obtained. The thickness of the pure W layer is about one-fifth of the whole sample thickness. In addition, the prepared W-Cu FGM has a relative density of 94.5 % and thermal conductivity of 185 W/(m·K). The W-Cu FGM prepared in this work may provide a good solution to alleviate the thermal stress between W PFM and Cu heat sink in the fusion reactors.
Keywords
W skeleton; W; Cu composites; Continuously functional graded materials; Pure W layer; Porosity distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Richou, F. Gallay, B. Boswirth, I. Chu, G. Dose, H. Greuner, G. Kermouche, M. Lenci, T. Loewenhoff, R. Maestracci, E. Meillot, M. Missirlian, J.Y. Pastor, A. Quet, S. Roccella, E. Tejado, M. Wirtz, E. Visca, G. Pintsuk, J.H. You, Performance assessment of thick W/Cu graded interlayer for DEMO divertor target, Fusion Eng. Des. 157 (2020), 111610.
2 P.M. Biesheuvel, H. Verweij, Calculation of the composition profile of a functionally graded material produced by centrifugal casting, J. Am. Ceram. Soc. 83 (4) (2010) 743-749.
3 R. Jedamzik, A. Neubrand, J. Rodel, Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites, J. Mater. Sci. 35 (2) (2000) 477-486.   DOI
4 Z.M. Yang, L.M. Zhang, Q. Shen, Preparation of Ti-Mo system functionally graded materials by co-sedimentation, Trans. Nonferrous Met. Soc. China 10 (6) (2000) 761-763.
5 M. Naebe, K. Shirvanimoghaddam, Functionally graded materials: a review of fabrication and properties, Appl. Mater. Today 5 (2016) 223-245.   DOI
6 Z.M. Yang, F. Tian, L.M. Zhang, Theoretical study on two sedimentation processes used to form functionally graded materials, J. Mater. Sci. Lett. 22 (10) (2003) 739-741.   DOI
7 W. Chen, Y. Shi, L. Dong, L. Wang, H. Li, Y. Fu, Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance, J. Alloy. Compd. 728 (2017) 196-205.   DOI
8 B. Wei, X. Yu, R. Chen, P. Chen, J. Cheng, A novel approach to fabricate W-Cu functionally graded materials via sedimentation and infiltration method, Mater. Sci. Eng. A 816 (2021), 141276.
9 B. Li, Z. Sun, G. Hou, F. Ding, P. Hu, F. Yuan, The sintering behavior of quasi-spherical tungsten nanopowders, Int. J. Refract. Met. H. Mater. 56 (2016) 44-50.   DOI
10 K. Maca, S. Simonikova, Effect of sintering schedule on grain size of oxide ceramics, J. Mater. Sci. 40 (2005) 5581-5589.   DOI
11 Z. Dong, N. Liu, W. Hu, X. Kong, Z. Ma, Y. Liu, The effect of Y2O3 on the grain growth and densification of W matrix during low temperature sintering: experiments and modelling, Mater. Des. 181 (2019), 108080.
12 L.K. Pillari, S.R. Bakshi, P. Chaudhuri, B.S. Murty, Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components, Adv. Powder Technol. 31 (8) (2020) 3657-3666.   DOI
13 E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. 98-99 (2015) 1929-1932.   DOI
14 A. Yusefi, N. Parvin, Fabrication of three layered W-Cu functionally graded composite via spark plasma sintering, Fusion Eng. Des. 114 (2017) 196-202.   DOI
15 Y. Ueda, J.W. Coenen, G. De Temmerman, R.P. Doerner, J. Linke, V. Philipps, E. Tsitrone, Research status and issues of tungsten plasma facing materials for ITER and beyond, Fusion Eng. Des. 89 (7-8) (2014) 901-906.   DOI
16 S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. Garcia-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nucl. Mater. 442 (1-3) (2013) S181-S189.   DOI
17 H. Chen, Q. Xu, J. Wang, P. Li, J. Yuan, B. Lyu, J. Wang, K. Tokunaga, G. Yao, L. Luo, Y. Wu, Effect of surface quality on hydrogen/helium irradiation behavior in tungsten, Nucl. Eng. Technol. 54 (6) (2021) 1947-1953.
18 D. Jiang, J. Long, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining, Mater. Des. 114 (2017) 185-193.   DOI
19 R. Mitteau, J.M. Missiaen, P. Brustolin, O. Ozer, A. Durocher, C. Ruset, C.P. Lungu, X. Courtois, C. Dominicy, H. Maier, C. Grisolia, G. Piazza, P. Chappuis, Recent developments toward the use of tungsten as armour material in plasma facing components, Fusion Eng. Des. 82 (15-24) (2007) 1700-1705.   DOI
20 J.H. You, E. Visca, C. Bachmann, T. Barrett, F. Crescenzi, M. Fursdon, H. Greuner, D. Guilhem, P. Languille, M. Li, S. McIntosh, A.V. Muller, J. Reiser, M. Richou, M. Rieth, European DEMO divertor target: operational requirements and material-design interface, Nucl. Mater. Energy 9 (2016) 171-176.   DOI
21 S. Van den Kerkhof, M. Blommaert, J.W. Coenen, M. Baelmans, Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window, Nucl. Fusion 61 (2021), 046050.
22 C. Tan, K. Zhou, T. Kuang, Selective laser melting of tungsten-copper functionally graded material, Mater. Lett. 237 (2019) 328-331.   DOI
23 D. Sun, Y. Wang, S. Huang, J. Zhao, G. Liu, J. Li, Plasma facing component with built-in tungsten wires and a W-Cu functionally graded layer: a finite element assessment, Fusion Eng. Des. 120 (2017) 9-14.   DOI
24 D. Jiang, J. Long, J. Han, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures, Mater. Sci. Eng. A 696 (2017) 429-436.   DOI
25 P. Zhao, S. Guo, G. Liu, Y. Chen, J. Li, Fabrication of W-Cu functionally graded material with improved mechanical strength, J. Alloy. Compd. 601 (2014) 289-292.   DOI
26 S. Saito, K. Fukaya, S. Ishiyama, K. Sato, Mechanical properties of HIP bonded W and Cu-alloys joint for plasma facing components, J. Nucl. Mater. 307 (2) (2002) 1542-1546.
27 C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie, W-Cu composites with submicron- and nanostructures: progress and challenges, NPG Asia Mater. 11 (1) (2019).
28 Q. Li, C. Xie, W. Wang, J. Wang, X. Wang, Q. Gao, Z. Chen, W. Peng, Z. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019), 111262.
29 J. Song, Y. Yu, Z. Zhuang, Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (1-3) (2013) S208-S213.   DOI
30 R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (1-3) (2012) 196-201.   DOI
31 Z.-J. Zhou, S.-X. Song, J. Du, Z.-H. Zhong, C.-C. Ge, Performance of W/Cu FGM based plasma facing components under high heat load test, J. Nucl. Mater. 363-365 (2007) 1309-1314.   DOI
32 G. Pintsuk, I. Smid, J.E. Doring, W. Hohenauer, J. Linke, Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions, J. Mater. Sci. 42 (1) (2006) 30-39.
33 B. Wang, D. Zhu, C. Li, J. Chen, Performance of full compositional W/Cu functionally gradient materials under quasi-steady-state heat loads, IEEE Trans. Plasma Sci. 46 (2018) 1551-1555.   DOI
34 Q. Li, C. Xie, W. Wang, J. Wang, X. Wang, Q. Gao, Z. Chen, W. Peng, Z. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019), 111262.
35 H. Yan, J. Fan, Y. Han, Q. Yao, T. Liu, Y. Lv, C. Zhang, Vacuum diffusion bonding W to W-Cu composite: interfacial microstructure and mechanical properties, Vacuum 165 (2019) 19-25.   DOI
36 S. Van Den Kerkhof, M. Blommaert, J. Coenen, S. Heuer, M. Baelmans, Investigating the potential of FGMs through numerical minimization of thermal stresses, Physica Scripta 2020 (2020), 014001.