DOI QR코드

DOI QR Code

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam

고밀도 폴리우레탄 폼의 극저온 성능 분석

  • Jeong-Hyeon Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Jeong-Dae Kim (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Tae-Wook Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Seul-Kee Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Jae-Myung Lee (Hydrogen Ship Technology Center, Pusan National University)
  • 김정현 (부산대학교 수소선박기술센터) ;
  • 김정대 (부산대학교 조선해양공학과) ;
  • 김태욱 (부산대학교 수소선박기술센터) ;
  • 김슬기 (부산대학교 수소선박기술센터) ;
  • 이제명 (부산대학교 수소선박기술센터)
  • Received : 2023.11.15
  • Accepted : 2023.12.04
  • Published : 2023.12.31

Abstract

Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Keywords

Acknowledgement

본 연구는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학육성사업(LINC 3.0)의 연구비와 2021학년도 부산대학교 신임교수연구정착금 지원으로 이루어졌음

References

  1. J. H. Kim, S. W. Choi, D. H. Park, J. M. Lee, "Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: Effect of low temperatures", Materials and Design, vol 65, pp. 914-922, (2015).
  2. J. H. Kim, W. S. Park, M. S. Chun, J. J. Kim, J. H. Bae, M. H. Kim, and J. M. Lee, "Ef f ect of pre-straining on low-temperature mechanical behavior of AISI 304L", Materials Science and Engineering A, vol 543, pp. 50-57, (2012). https://doi.org/10.1016/j.msea.2012.02.044
  3. J. H. Kim, S. W. Choi, D. H. Park, S. B. Park, S. K. Kim, K. J. Park, and J. M. Lee, "Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood", Cryogenics, vol 91, pp. 36-46.
  4. D. H. Lee, J. H. Bae, B. K. Hwang, J. H. Kim, S. K. Kim, J. M. Lee, "Impact behavior of hollow glass bubble reinforced foam core LNG insulation panel in cryogenic temperature", Journal of Composite Materials, vol 55, (2020).
  5. S. K. Kim, J. D. Kim, D. H. Lee, J. H. Kim, J. M. Lee, "Characteristics of pre-strained polyisocyanurate foam: Deformation recovery and compressive mechanical behavior at cryogenic temperature", Journal of Cellular Plastics, vol 58, pp. 357-376, (2022).
  6. S. G. Jeon, J. H. Kim, J. D. Kim, Y. J. Jeong, H. T. Kim, S. K. Kim, J. M. Lee, "Impact Failure characteristics of LNG carrier cargo containment system", International journal of Mechanical Sciences, vol 240, pp. 938-948, (2023). https://doi.org/10.1016/j.ijmecsci.2022.107938
  7. K. Uram, A. Prociak, L. Vevere, R. Pomilovskis, U. Cabulis, M. Kirpluks, "Natural oil-based rigid polyurethane foam thermal insulation applicable at cryogenic temperatures", Polymers, vol 13, pp. 4276, (2021).
  8. B. Sture, L. Vevere, M. Kirpluks, D. Godina, A. Fridrihsone, U. Cabulis, "Polyurethane foam composites reinforced with renewable fillers for cryogenic insulation", Polymers, vol 13, pp. 4089, (2021).
  9. J. H. Kim, J. H. Ahn, J. D. Kim, D. H. Lee, S. K. Kim, J. M. Lee, "Inf luence of silica-aerogel on mechanical characteristics of polyurethane-based composites: thermal conductivity and strength", Materials, vol 14, pp. 1790, (2021).