• Title/Summary/Keyword: Denitrifying

Search Result 117, Processing Time 0.026 seconds

Abundance and expression of denitrifying genes (narG, nirS, norB, and nosZ) in sediments of wastewater stabilizing constructed wetlands

  • Chon, Kyongmi;Cho, Jaeweon
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • As expected, the expression of denitrifying genes in a Typha wetland (relatively stagnant compared to other ponds), showing higher nitrogen removal efficiency in summer, was affected by temperature. The abundance and gene transcripts of nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) genes in seasonal sediment samples taken from the Acorus and Typha ponds of free surface flow constructed wetlands were investigated using quantitative polymerase chain reaction (Q-PCR) and quantitative reverse transcription PCR (Q-RT-PCR). Denitrifying gene copy numbers ($10^5-10^8$ genes $g^{-1}$ sediment) were found to be higher than transcript numbers-($10^3-10^7$ transcripts $g^{-1}$ sediment) of the Acorus and Typha ponds, in both seasons. Transcript numbers of the four functional genes were significantly higher for Typha sediments, in the warm than in the cold season, potentially indicating greater bacterial activity, during the relatively warm season than the cold season. In contrast, copy numbers and expression of denitrifying genes of Acorus did not provide a strong correlation between the different seasons.

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant

  • Lim Young-Woon;Lee Soon-Ae;Kim Seung Bum;Yong Hae-Young;Yeon Seon-Hee;Park Yong-Keun;Jeong Dong-Woo;Park Jin-Sook
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.383-390
    • /
    • 2005
  • The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.

Nitroglycerin Biodegradation under Denitrification Conditions and Corresponding Microbial Community Shifts upon Acclimation (탈질조건에서 nitroglycerin의 생물학적 분해 동역학 및 미생물 군집 변화)

  • Choi, Wonchul;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.42-54
    • /
    • 2019
  • Biodegradation of an explosive compound, glyceryl trinitrate (GTN), was studied with a denitrifying microbial culture grown in a sequencing batch reactor and a GTN acclimated denitrifying culture. The GTN acclimated culture, which were fed on GTN for 1 month, degraded GTN regioselectively via denitration on C1 position as compared to C2 position denitration by denitrifying culture that has never been exposed to GTN. Accumulation of two isomeric glyceryl dinitrates (GDNs) in both culture medium suggests that GDN denitration is the rate-limiting step in GTN biodegradation. The first order GTN degradation rate normalized to cell concentration of the acclimated culture was calculated to be 0.045 (${\pm}0.002$) L/g-hr. Increasing concentration of electron acceptor(nitrate) resulted in discouraged GTN degradation. According to microbial community analysis, prolonged GTN exposure resulted in 25% increase in the genus level of the GTN acclimated culture with the disappearance of two dominating denitrifying microbial species of Methyloversatilis universalis and Hyphomicrobium zavarzinii in the denitrifying culture.

Effects of Electron Acceptor and Electron Donor on Biodegradation of $CCl_4$by Biofilms (Electron Donor 및 Electron Acceptor의 농도가 생물활성대형성 및 유해폐기물 처리에 미치는 영향)

  • Bae, Woo-Keun;Bruce E. Rittmann
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.149-154
    • /
    • 1991
  • Biodegradation of carbon tetrachloride (CTC) in denitrifying and aerobic columns was investigated under various conditions of electron-acceptor and electron-donor availability. CTC removal increased when the electron-acceptor (nitrate) injection was stopped in the denitrifying column; however, CTC remova1 decreased when electron donor (acetate) was deleted in the denitrifying and the aerobic column. Small fractions of the CTC removed appeared as chloroform, indicating that reductive dechlorination of CTC was occurring. The results from the denitrifying column support the hypothesis that CTC behaves as an electron acceptor that competes for the pool of available electrons inside the bacterial cells.

  • PDF

A Batch Study on BTEX and MTBE Biodegradation by Denitrifiers under Aerobic and Anaerobic Conditions

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study, But finally Biodegradaton was observed for all of the test compounds.

  • PDF

Possibility of Anoxic Phosphorus Removal by Denitrifier in Denitrifying EBPR System (생물학적 질소.인 동시제거 시스템에서 탈질미생물의 인 제거 가능성)

  • Lee, Hansaem;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.782-789
    • /
    • 2013
  • Enhanced biological phosphorus removal (EBPR) behavior and microbial characteristics in the anaerobic-aerobic SBR (PAO SBR) and the anaerobic-anoxic SBR (DPAO SBR) were examined in this research. For 392 days of operation, both SBRs have exhibited a good EBPR (or denitrifying EBPR) performance. $P_{release}/P_{influent}$ ratio was highest in both reactors after the stabilization, while the efficiency of phosphorus removal was decreased since the sludge granulation has been visually observed within the reactor. The comparative analysis of Pyrosequencing-based microbial population between PAO and DPAO sludges showed indirectly that Dechloromonas spp. could utilize $O_2$ and $NO_3{^-}-N$ as an electron acceptor and Accumulibacter phosphatis use only $O_2$ in EBPR system. Also, we concluded that Thauera spp. as a denitrifier contribute significantly to the anoxic phosphorus removal in the DPAO system.

Quantitative distribution of denitrifying bacteria with nirS and nirK in MLE and A/O process (MLE와 A/O 공정에서의 nirS 와 nirK 를 가진 탈질미생물의 정량적 분포)

  • Lim, Dong-Seok;Kim, Yun-Jung;Kim, Hyung-Gun;Park, Seung-Guk;Chung, Tai-Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.591-598
    • /
    • 2012
  • Denitrification is an important biological mechanism in wastewater treatment process because this process is technically to remove nitrogen from water to air. There have been lots of study about denitrification engineering and molecular biological research about denitrifying bacteria, respectively. However, combination of these researches was unusual and rare. This study is about the correlation between quantity of denitrifying bacteria and denitrification potential, and consists of NUR batch test as analysis method of denitrification potential and quantitative molecular analysis for denitrifying bacteria. Three reactors (A/O, MLE and A/O of nitrogen deficiency) are operated to get activated sludge with various denitrification potential. All samples which were acquired from reactors were measured denitrification potential by NUR test and NUiR test. Also, Real-time PCR was conducted for quantification of denitrifying bacteria composition in activated sludge. The various denitrification potentials were measured in the reactors. The denitrifiaction potential was the highest in MLE process and the reactor of the nitrogen deficiency showed the lowest. Genomic DNA of activated sludge was obtained and consequently, real-time PCRuse the primer sets of nirK and nirS were conducted to quantify genes involving denitrification reductase production. As the result of real-time PCR, nirK gene showed more significant influence on denitrification potential comapred with nirS gene.

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).

A comparison of community structure and denitrifying ratio for denitrifying bacteria dependent on agricultural methods and seasons (농법과 계절에 따른 탈질세균의 군집 구조와 탈질율 비교)

  • Yoon, Jun-Beom;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • We studied soil composition, $N_2O$ production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of $N_2O$ production, the amount of $N_2O$ production was high in May and November soils, but the rate of $N_2O$ production was fast in August soil. The average number of denitrifying bacteria were $1.32{\times}10^4MPN{\cdot}g^{-1}$ in the organic farming soil, $1.17{\times}10^4MPN{\cdot}g^{-1}$ in the emptiness farming soil, and $6.29{\times}10^3MPN{\cdot}g^{-1}$ in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.