Browse > Article
http://dx.doi.org/10.4491/eer.2014.069

Abundance and expression of denitrifying genes (narG, nirS, norB, and nosZ) in sediments of wastewater stabilizing constructed wetlands  

Chon, Kyongmi (School of Civil and Environmental Engineering, Yonsei University)
Cho, Jaeweon (School of Civil and Environmental Engineering, Yonsei University)
Publication Information
Abstract
As expected, the expression of denitrifying genes in a Typha wetland (relatively stagnant compared to other ponds), showing higher nitrogen removal efficiency in summer, was affected by temperature. The abundance and gene transcripts of nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) genes in seasonal sediment samples taken from the Acorus and Typha ponds of free surface flow constructed wetlands were investigated using quantitative polymerase chain reaction (Q-PCR) and quantitative reverse transcription PCR (Q-RT-PCR). Denitrifying gene copy numbers ($10^5-10^8$ genes $g^{-1}$ sediment) were found to be higher than transcript numbers-($10^3-10^7$ transcripts $g^{-1}$ sediment) of the Acorus and Typha ponds, in both seasons. Transcript numbers of the four functional genes were significantly higher for Typha sediments, in the warm than in the cold season, potentially indicating greater bacterial activity, during the relatively warm season than the cold season. In contrast, copy numbers and expression of denitrifying genes of Acorus did not provide a strong correlation between the different seasons.
Keywords
Constructed wetland; Denitrifying genes; quantitative polymerase chain reaction (Q-PCR); quantitative reverse transcription polymerase chain reaction (Q-RT-PCR); Sediments;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chon K, Chang JS, Lee E, Lee J, Ryu J, Cho J. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol. Eng. 2011;37: 64-69.   DOI   ScienceOn
2 Fey A, Eichler S, Flavier S, Chrsitan R, Hofle MG, Guzman CA. Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl. Environ. Microbiol. 2004;70:3618-3623.   DOI   ScienceOn
3 Neretin LN, Schippers A, Pernthaler A, Hamann K, Amann R, Jorgensen BB. Quantification of dissimilatory (bi) sulphite reductase gene expression in Desulfobacterium autotrophicum using real time PCR. Environ. Microbiol. 2003;5:660-671.   DOI   ScienceOn
4 Wawrik B, Paul JH, Tabita FR. Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl. Environ. Microbiol. 2002;68:3771-3779.   DOI
5 Smith CJ, Nedwell DB, Dong LF, Osborn AM. Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl. Environ. Microbiol. 2007;73:3612-3622.   DOI   ScienceOn
6 Beller HR, Chain PSG, Letain TE, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 2006;188: 1473-1488.   DOI   ScienceOn
7 Henderson SL, Dandie CE, Patten C, et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions and denitrification in anoxic soil microcosm amended with glucose and plant residues. Appl. Environ. Microbiol. 2010;76:2155-2164.   DOI   ScienceOn
8 Chon K, Kim Y, Chang NI, Cho J. Evaluating wastewater stabilizing constructed wetland, through diversity and abundance of the nitrite reductase gene nirS, with regard to nitrogen control. Desalination 2010;264:201-205.   DOI   ScienceOn
9 Lopez-Gutierrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods. 2004;57:399-407.   DOI   ScienceOn
10 Park N, Lee J, Chon K, Kang H, Cho J. Investigationg microbial activities of constructed wetlands, with respect to nitrate and sulfate reduction. Desalination Water Treat. 2009;1:172-179.   DOI
11 Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron. 2007;96:249-305.   DOI
12 Kadlec RH. Nitrogen farming for pollution control. J. Environ. Sci. Health. 2005;40:1307-1330.   DOI   ScienceOn
13 Park N, Kim JH, Cho J. Organic matter, anion, and metal wastewater treatment in Damyang surface flow constructed wetlands in Korea. Ecol. Eng. 2008;32:68-71.   DOI   ScienceOn
14 Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007;380:48-65.   DOI   ScienceOn
15 Bachand PAM, Horne AJ. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. 1999;14:17-32.   DOI   ScienceOn
16 Lee CG, Fletcher TD, Sun G. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009;9:11-22.   DOI   ScienceOn
17 Bru D, Sarr A, Philippot L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 2007;73:5971-5974.   DOI   ScienceOn
18 Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 1998;64:3769-3775.
19 Braker G, Zhou J, Wu L, Devol AH, Tiedje JM. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microbiol. 2000;66:2096-2104.   DOI
20 Henry S, Baudoin E, Lopez-Gutierreza JC, Martin-Laurent F, Brauman A, Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods. 2004;59:327-335.   DOI   ScienceOn
21 Braker G, Tiedje JM. Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 2003;69:3476-3483.   DOI
22 Zumft WG. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997;61:533-616.
23 Stres B, Mahne I, Avgustin G, Tiedje JM. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated Michigan soils. Appl. Environ. Microbiol. 2004;70:301-309.   DOI
24 Zumft WG. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J. Inorg. Biochem. 2005;99:194-215.   DOI   ScienceOn
25 Horn MA, Drake HL, Schramm A. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl. Environ. Microbiol. 2006;72:1019-1026.   DOI   ScienceOn
26 Scala DJ, Kerkhof LJ. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett. 1998;162: 61-68.   DOI
27 Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR(Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009;67:6-20.   DOI   ScienceOn
28 Geets J, Cooman MD, Wittebolle L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 2007;75:211-221.   DOI   ScienceOn
29 Philippot L. Use of functional genes to quantify denitrifiers in the environment. Biochem. Soc. Trans. 2006;34:101-103.   DOI   ScienceOn
30 Smith CJ, Nedwell DB, Dong LF, Osborn AM. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ. Microbiol. 2006;8:804-815.   DOI   ScienceOn
31 Wallenstein MD, Vilgalys RJ. Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia. 2005;49:665-672.   DOI   ScienceOn