Browse > Article

Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant  

Lim Young-Woon (Department of Wood Science, University of British Columbia)
Lee Soon-Ae (Department of Biotechnology, Hannam University)
Kim Seung Bum (Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University)
Yong Hae-Young (Department of Biotechnology, Hannam University)
Yeon Seon-Hee (Department of Biotechnology, Hannam University)
Park Yong-Keun (Laboratory of Microbial Genetics, School of Life Science and Biotechnology, Korea University)
Jeong Dong-Woo (Department of Biotechnology, Hannam University)
Park Jin-Sook (Department of Biotechnology, Hannam University)
Publication Information
Journal of Microbiology / v.43, no.5, 2005 , pp. 383-390 More about this Journal
Abstract
The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.
Keywords
ARDRA; denitrifying bacteria; sewage treatment plant;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Ahn, I. S., M.W. Kim, H.J. La, K.M. Choi, and J.C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13, 15-21
2 Cho, H.B., J.K. Lee, and Y.K. Choi. 2003. The genetic diversity analysis of the bacterial community in groundwater by denaturing gradient gel electrophoresis (DGGE). J. Microbiol. 41, 327-334
3 Drysdale, G.D., H.C. Kasan, and F. Bux. 2001. Assessment of denitrification by the ordinary heterotrophic organisms in an NDBEPR activated sludge system. Water Sci. Technol. 43, 147- 54   PUBMED
4 Kempster, P.L., H.R. van Vliet, and A. Kuhn. 1997. The need for guidelines to bridge the gap between ideal drinking water quality and that quality which is practically achievable and acceptable. Water SA. 23, 163-167
5 Krieg, N.R. and J.G. Holt. 1984. Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore, USA
6 Muyzer, G.,T. Brinkhoff, U. Nubel, C. Santegoeds, H. Schafer, and C. Wawer. 1988. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, p. 1-27. In ADL. Akkermans, van Elsas JD and de Bruijin, FJ (eds.), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Nederlandsn
7 Patureau, D., E. Zumstein, J.P. Delgenes, and R. Moletta. 2000. Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems. Microb. Ecol. 39, 145-152   DOI   ScienceOn
8 Wagner, M., R. Amann, P. Kampfer, B. Assmus, A. Hartmann, P. Hutzler, N. Springer, and K.H. Schleifer. 1993. Probing activated sludge with olignucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59, 1520- 1525
9 Zumft, W.G. 1992. The denitrifying prokaryotes, p. 554-582. In A. Balows, H.G. Truper, M. Dworkim, W. Harder and K.H. Schleifer (eds.), The Prokaryotes. Springer-verlag, New York, New York
10 Glass, C., J.A. Silverstein, and L. Denton. 1997. Bacterial populations in activated sludge denitrifying high nitrate waste reflect pH differences, p. 377-380 Proc. 2nd Int. Conf. on Microorganisms in Activated Sludge and Biofilm Processes, Berkeley, Califonia
11 Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics, John Wiley and Sons, New York, New York
12 Juretschko, S., A. Loy, A. Lehner, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99   DOI   ScienceOn
13 Swofford, D.L. 1999. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), version 4.0b4a. Sinauer Associates, Sunderland, Massachusetts
14 Holt, J.G.., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Bergey's Manual of Determinative Bacteriology. The Williams & Wilkins, Baltimore, Maryland
15 Otlanabo, N.L. 1993. Denitrification of ground water for potable purposes. WRC report No. 403/1/93
16 Gray, N.F. 1990. Activated Sludge: Theory and Practice. Oxford University Press, New York, New York
17 Sneath, P.H.A., N.S. Mair, M.E. Sharpe, and J.G. Holt. 1986. Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, Maryland
18 Rheinheimer, G. 1985. Aquatic Microbiology, 3rd ed. VEB Gustav Fischer Verlag: Jena
19 Magnusson, G.., H. Edin, and G. Dalhammar. 1998. Characterization of efficient denitrifying bacteria strains isolated from activated sludge by 16S-rDNA analysis. Wat. Sci. Tech. 38, 63-68
20 Janda, V., J. Rudovsky, J. Wanner, and K. Marha 1998. In situ denitrification of drinking water. Water Sci. Technol. 20, 215-219
21 Lee, S.Y., S.H. Lee, and Y.K. Park. 2005. New nirS-harboring denitrifying bacteria isolated from activated sludge and their denitrifying functions in various cultures. J. Microbiol. Biotechnol. 15, 14-21
22 Tiedje, J.M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p. 179-244. In A.J.B. Zehnder (ed.), Biology of Anaerobic Microorganisms. J. Wiley & Sons, Inc., New York, New York
23 Knowles, R. 1982. Denitrification. Microbiol. Rev. 46, 43-70   PUBMED
24 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc. Acids Res. 24, 4876-4882
25 Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271   PUBMED
26 Hillis, D.M. and J.J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182-192
27 Saito, H. and K. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72, 619-629   DOI   ScienceOn
28 Jeon, C.O., S.H. Woo, and J.M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13, 385-393
29 Kim, J.K., S.K. Kim, and S.H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11, 756-762
30 Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reversed high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125-128   DOI   ScienceOn
31 Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.T. Lane. 1991. 16S ribosomal DNA amplification of phylogenetic study. J. Bacteriol. 173, 697-703   PUBMED
32 Cheneby, D., L. Philippot, A. Hartmann, C. Henault, and J.-C. Germon. 2000. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soil. FEMS Microbiol. Ecol. 34, 121-128   DOI   ScienceOn
33 Yoon, Y.J., K.H. Im, Y.H. Koh, S.K. Kim, and J.W. Kim. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319
34 Lee, S.Y., H.G. Kim, J.B. Park, and Y.K. Park. 2004. Denaturing gradient gel electrophoresis analysis of bacterial populations in 5-stage biological nutrient removal process with step feed system for wastewater treatment. J. Microbiol. 42, 1-8
35 Krogulska, B. and R. Mycielski. 1984. Bacterial microflora participating in the removal of nitrogen from industrial wastewaters by nitrification and denitrifaction. Acta Microbiol. Pol. 33, 67-76   PUBMED
36 Lazarova, V.Z., B. Capdeville, and L. Nikolov. 1992. Biofilm performance of a fluidized bed biofilm reactor for drinking water denitrification. Water Sci. Technol. 26, 555-566
37 Pike, E.B. and E.G. Carrington. 1972. Recent developments in the study of bacteria in the activated-sludge process. Water Pollut. Control 71, 583-605
38 Yeon, S.H., W.J. Jeong, and J.S. Park. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43, 1-10