• Title/Summary/Keyword: Dendritic

Search Result 765, Processing Time 0.027 seconds

Syntenin Is Expressed in Human Follicular Dendritic Cells and Involved in the Activation of Focal Adhesion Kinase

  • Cho, Whajung;Kim, Hyeyoung;Lee, Jeong-Hyung;Hong, Seung Hee;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.199-204
    • /
    • 2013
  • Syntenin is an adaptor molecule containing 2 PDZ domains which mediate molecular interactions with diverse integral or cytoplasmic proteins. Most of the results on the biological function of syntenin were obtained from studies with malignant cells, necessitating exploration into the role of syntenin in normal cells. To understand its role in normal cells, we investigated expression and function of syntenin in human lymphoid tissue and cells in situ and in vitro. Syntenin expression was denser in the germinal center than in the extrafollicular area. Inside the germinal center, syntenin expression was obvious in follicular dendritic cells (FDCs). Flow cytometric analysis with isolated cells confirmed a weak expression of syntenin in T and B cells and a strong expression in FDCs. In FDC-like cells, HK cells, most syntenin proteins were found in the cytoplasm compared to weak expression in the nucleus. To study the function of syntenin in FDC, we examined its role in the focal adhesion of HK cells by depleting syntenin by siRNA technology. Knockdown of syntenin markedly impaired focal adhesion kinase phosphorylation in HK cells. These results suggest that syntenin may play an important role in normal physiology as well as in cancer pathology.

A generalized scheil equation for the dendritic solidification of binary alloys (이원합금의 수지상응고에 대한 일반화된 Scheil식)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2367-2374
    • /
    • 1996
  • A generalized Scheil equation for the solute redistribution in the absence of the back diffusion during the dendritic solidification of binary alloys is derived, in which coarsening of the secondary dendrite arms is taken into account. The obtained equation essentially includes the original Scheil equation as a subset. Calculated results for typical cases show that the coarsening affects the microsegregation significantly. The eutectic fraction predicted for coarsening is considerably smaller than that for fixed arm spacing. The most important feature of the present equation in comparison with the Scheil equation lies in the fact that there exists a lower limit of the initial composition below which the eutectic is not formed. Based on the generalized Scheil equation and the lever rule, a new regime map of the eutectic formation on the initial composition-equilibrium partition coefficient plane is proposed. The map consists of three regimes: the eutectic not formed, conditionally formed and unconditionally formed, bounded by the solubility and diffusion controlled limit lines.

Synthesis and Characterization of Dendritic Nonlinear Optical Chromophore Containing Phenylene Attached with Bulky Alkyl Group

  • Choi, Jin-Joo;Kim, Kyoung-Mahn;Lim, Jong-Sun;Lee, Chang-Jin;Kim, Dong-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2007
  • Star-shaped, nonlinear optical (NLO) material was synthesized and its optical, thermal, and electro-optic properties were investigated. Three NLO-active dipolar chromophores containing a phenylene ring substituted with a bulky alkyl chain as a conjugation bridge were chemically bonded to the core of 1,1,1-tris(4-hydroxyphenyl)ethane to form a dendritic architecture. The chemical structure and purity of the chromophore were verified by NMR spectroscopy. The chromophore exhibited a broad absorption band centered at around 608 nm tailing up to 760 nm in toluene solution and also showed a discernible solvatochromic shift in more polar solvent. The chloroform solution of the dendrimer produced an absorption band with a red-shifted maximum as large as 28 nm when compared to that of the toluene solution. It was thermally stable up to $275^{\circ}C$ in a nitrogen atmosphere and had a glass transition temperature of $76^{\circ}C$. In a preliminary result, the polymer film containing the dendritic compound exhibited a shift of 19 pm/V taken at $1.55{\mu}$.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Dendritic Cells-based Vaccine and Immune Monitoring for Hepatocellular Carcinoma

  • Lee, Dae-Heui
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.11-14
    • /
    • 2010
  • Human tumors, including those of the hepatobiliary system, express a number of specific antigens that can be recognized by T cells, and may provide potential targets for cancer immunotherapy. Dendritic cells (DCs) are rare leucocytes that are uniquely potent in their ability to capture, process and present antigens to T cells. The ability to culture sufficient numbers of DCs from human bone marrow or blood progenitors has attracted a great deal of interest in their potential utilization in human tumor vaccination. $CD34^+$ peripheral blood stem cells (PBSCs) were obtained from a patient with a hepatocellular carcinoma. The PBSCs were cultured in the X-VIVO 20 medium supplemented with the Flt-3 Ligand (FL), GM-CSF, IL-4 and TNF-$\alpha$ for 12 days. The morphology and functions of the cells were examined. The generated cells had the typical morphology of DCs. When the DCs were reinjected into the same patient, an augmentation of the cytotoxic T lymphocyte (CTL) activity was observed. Concomitantly, an increase in the natural killer (NK) cell activity was also detected in the patient. These results suggest that DCs-based cancer immunotherapy may become an important treatment option for cancer patients in the future.

Electrical Properties of LB Films Using Dendritic Macromolecules Containing Pyridinealdoxime Functional Group (Pyridinealdoxime 기능기 그룹을 가진 덴드리틱 거대분자를 이용한 LB막의 전기적 특성)

  • 정상범;유승엽;박은미;김정균;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.761-763
    • /
    • 2001
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Dendrimer can be made with high regularity and controlled molecular weight. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. One of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a G4-48PyA dendrimer LB films containing 48 pyridinealdoxime functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. And we have studied the electrical properties of the ultra-thin dendrimer LB films. The electrical properties of the ultra-thin dendrimer LB films were investigated by studying the current-voltage(I-V) characteristics of metal/dendrimer LB films/metal (MIM) structure. And rectifying behavior of the devices was occurred in applied field.

  • PDF

Granulocyte-macrophage colony stimulating factor protects dendritic cells from anticancer drug-induced apoptosis (수지상세포에서 GM-CSF의 항암제유도 세포사멸 방지효과에 관한 연구)

  • Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.607-613
    • /
    • 2003
  • Dendritic cells (DCs) play an essential role in a variety of immune reactions involving $CD4^+$ T cells and have been used to enhance tumor-specific immune responses. Immunosuppression in patients with cancer includes the downregulation of function and number of DCs. Although DCs have been studied, the apoptosis of Des induced by anticancer drugs for chemotherapy remains largely uncharacterized. This study demonstrated that GM-CSF protects DCs from 5-fluorouracil (5-FU) or mitomycin C-induced apoptosis. After 6 - 10 days culture, DCs were characterized by specific surface marker, CD11c and MHC class II. MTT assay revealed that GM-CSF significantly enhanced the viability of DCs treated with 5-FU or mitomycin C. The percentage of dead cells of DCs was determined by cell size using FACScan and GM-CSF was clearly effective. However, GM-CSF did not increase the expression of MHC class II on viable DCs gated, suggesting that GM-CSF may differentially regulate critical factors involved in the function of DCs. For the quantitative analysis of apoptosis, annexin V-FITC staining was performed. 5-FU induced the apoptosis of DCs and GM-CSF significantly protects DCs from 5-FU-induced apoptosis. Taken together, the results in this study that GM-CSF has an anti-apoptosis effect on DCs may provide patients with cancer with clinical benefits to overcome the immunosuppression induced by the decrease of number and functional insufficiency of DCs.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.

Immunomodulatory Effects of Eckol, a Pure Compound of Ecklonia Cava, on Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.199-203
    • /
    • 2006
  • Background: Eckol purified from Ecklonia cava, a brown alga has been known to have cytoprotective effects on some cell lines against oxidants and ionizing radiation. However, there is no study about the effects of eckol on immune cells. Methods: Bone marrow (BM)-derived dendritic cells (DCs) were used to demonstrate the immunomodulatory effects of eckol on DCs, such as viability, the expression of surface markers, allogeneic stimulating capacity using MTI, flow cytometric, $^3H$-thymidine incorporation assay. Results: Eckol did protect DCs against cytokine withdrawal-induced apoptosis in a concentration dependent manner based on MTT assay. And also, it increased the expression of MHC class II and CD86 (B7.2) molecules, maturation markers, on the surface of viable DCs gated in FACS analysis. Furthermore, eckol-treated DCs stimulated the proliferation of allogeneic $CD4^+$ T lymphocytes compared to imDCs in $^3H$-thymidine incorporation assay. $CD4^+$ T lymphocytes activated with eckol-treated DCs produced the larger amount of IFN-${\gamma}$ and IL-4 than those cells with imDCs. Conclusion: Taken together, we demonstrate in this study that eckol, a pure compound of Ecklonia cava, may modulate the immune responses through the phenotypic and functional changes of DCs.

Ginsan Enhances Humoral Antibody Response to Orally Delivered Antigen

  • Na, Hee Sam;Lim, You Jin;Yun, Yeon-Sook;Kweon, Mi Na;Lee, Hyun-Chul
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • Background: There have been several reports describing the capability of ginseng extracts as an adjuvant. In this study, we tested if ginsan, a polysaccharide extracted from Panax ginseng, was effective in enhancing antibody response to orally delivered Salmonella antigen. Methods: Ginsan was treated before oral salmonella antigen administration. Salmonella specific antibody was determined by ELISA. mRNA expression was determined by RT-PCR. Cell migration was determined by confocal microscopy and flow cytometry. COX expression was detected by western blot. Results: Ginsan treatment before oral Salmonella antigen delivery significantly increased both secretory and serum antibody production. Ginsan increased the expression of COX in the Peyer's patches. Various genes were screened and we found that CCL3 mRNA expression was increased in the Peyer's patch. Ginsan increased dendritic cells in the Peyer's patch and newly migrated dendritic cells were mostly found in the subepithelial dome region. When COX inhibitors were treated, the expression of CCL3 was reduced. COX inhibitor also antagonized both the migration of dendritic cells and the humoral immune response against oral Salmonella antigen. Conclusion: Ginsan effectively enhances the humoral immune response to orally delivered antigen, mediated by CCL3 via COX. Ginsan may serve as a potent vaccine suppliment for oral immunization.