Synthesis and Characterization of Dendritic Nonlinear Optical Chromophore Containing Phenylene Attached with Bulky Alkyl Group

  • Choi, Jin-Joo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Kyoung-Mahn (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lim, Jong-Sun (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Chang-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Wook (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2007.02.28

초록

Star-shaped, nonlinear optical (NLO) material was synthesized and its optical, thermal, and electro-optic properties were investigated. Three NLO-active dipolar chromophores containing a phenylene ring substituted with a bulky alkyl chain as a conjugation bridge were chemically bonded to the core of 1,1,1-tris(4-hydroxyphenyl)ethane to form a dendritic architecture. The chemical structure and purity of the chromophore were verified by NMR spectroscopy. The chromophore exhibited a broad absorption band centered at around 608 nm tailing up to 760 nm in toluene solution and also showed a discernible solvatochromic shift in more polar solvent. The chloroform solution of the dendrimer produced an absorption band with a red-shifted maximum as large as 28 nm when compared to that of the toluene solution. It was thermally stable up to $275^{\circ}C$ in a nitrogen atmosphere and had a glass transition temperature of $76^{\circ}C$. In a preliminary result, the polymer film containing the dendritic compound exhibited a shift of 19 pm/V taken at $1.55{\mu}$.

키워드

참고문헌

  1. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K-Y. Jen, Chem. Phys., 245, 35 (1999)
  2. S. R. Marder, B. Kippelen, A. K-Y. Jen, and N. Peyghambarian, Nature, 388, 845 (1997)
  3. K. R. Yoon, H. Lee, B. K. Rhee, and C. Jung, Macromol. Res., 12, 581 (2004)
  4. D. W. Kim, S. I. Hong, S. Y. Park, and N. Kim, Bull. Korean Chem. Soc., 18, 198 (1997)
  5. T.-D. Kim, J. Luo, Y. Tian, J.-W. Ka, N. M. Tucker, M. Haller, J.-W. Kang, and A. K.-Y. Jen, Macromolecules, 39, 1676(2006)
  6. D. W. Kim, H. Moon, S. Y. Park, and S. I. Hong, Reactive Func. Mater., 42, 73 (1999)
  7. D. W. Kim, S. Y. Park, and S. I. Hong, Polym. J., 31, 55 (1999) https://doi.org/10.1295/polymj.31.55
  8. S. K. Lee, M. J. Cho, H. Yoon, S. H. Lee, J. H. Kim, Q. Zhang, and D. H. Choi, Macromol. Res., 12, 484 (2004)
  9. M. Ahlheim, M. Barzoukas, P. V. Bedworth, J. Y. Hu, S. R. Marder, J. W. Perry, C. M. Stahelin, and B. Zysset, Science, 271, 335 (1996)
  10. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science, 288, 119 (2000)
  11. H. Saadeh, L. M. Wang, and L. P. Yu, J. Am. Chem. Soc., 122, 546 (2000)
  12. H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, Chem. Mater., 12, 1187 (2000)
  13. A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev., 99, 1665 (1999)
  14. A. Adronov, S. L. Gilat, J. M. J. Fréchet, K. Ohta, F. V. R. Neuwahl, and G. R. Fleming, J. Am. Chem. Soc., 122, 1175 (2000)
  15. L. R. Dalton, J. Phys.: Condens. Matter., 15, 897 (2003)
  16. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, and A. K.-Y. Jen, Adv. Func. Mater., 12, 565 (2002)
  17. J. Luo, A. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S.-H. Jang, L. R. Dalton, and A. K.-Y. Jen, J. Phys. Chem. B, 108, 8523 (2004)
  18. D. W. Kim, S. C. Yoon, J.-S. Lim, and C. Lee, Opt. Mater., in press
  19. G. Melikian, F. P. Rouessac, and C. Alexander, Synth. Commun., 25, 3045 (1995) https://doi.org/10.1080/00397919508011437
  20. C. C. Teng and H. T. Man, Appl. Phys. Lett., 56, 1734 (1990) https://doi.org/10.1063/1.102572