DOI QR코드

DOI QR Code

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University) ;
  • Koo, Ji-Hye (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University) ;
  • Bae, Jin-Gyu (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University) ;
  • Kim, Soo-Chan (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University) ;
  • Baik, Song (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University) ;
  • Kim, Mi-Yeon (Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University)
  • Received : 2011.01.24
  • Accepted : 2011.01.27
  • Published : 2011.02.28

Abstract

Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Keywords

References

  1. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787. https://doi.org/10.1038/35021228
  2. Akira, S. and Takeda, K. (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511. https://doi.org/10.1038/nri1391
  3. Akira, S., Takeda, K. and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680. https://doi.org/10.1038/90609
  4. Medzhitov, R. (2001) Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135-145. https://doi.org/10.1038/35100529
  5. Kawai, T. and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384. https://doi.org/10.1038/ni.1863
  6. Sato, M., Sano, H., Iwaki, D., Kudo, K., Konishi, M., Takahashi, H., Takahashi, T., Imaizumi, H., Asai, Y. and Kuroki, Y. (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 171, 417-425. https://doi.org/10.4049/jimmunol.171.1.417
  7. Lu, Y. C., Yeh, W. C. and Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151. https://doi.org/10.1016/j.cyto.2008.01.006
  8. Mebius, R. E., Rennert, P. and Weissman, I. L. (1997) Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493-504. https://doi.org/10.1016/S1074-7613(00)80371-4
  9. Mebius, R. E. (2003) Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292-303. https://doi.org/10.1038/nri1054
  10. Cupedo, T., Kraal, G. and Mebius, R. E. (2002) The role of CD45+CD4+CD3- cells in lymphoid organ development. Immunol. Rev. 189, 41-50. https://doi.org/10.1034/j.1600-065X.2002.18905.x
  11. Kim, M. Y., Gaspal, F. M., Wiggett, H. E., McConnell, F. M., Gulbranson-Judge, A., Raykundalia, C., Walker, L. S., Goodall, M. D. and Lane, P. J. (2003) CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643-654. https://doi.org/10.1016/S1074-7613(03)00110-9
  12. Kim, M. Y. (2008) Roles of embryonic and adult lymphoid tissue inducer cells in primary and secondary lymphoid tissues. Yonsei Med. J. 49, 352-356. https://doi.org/10.3349/ymj.2008.49.3.352
  13. Gaspal, F. M., Kim, M. Y., McConnell, F. M., Raykundalia, C., Bekiaris, V. and Lane, P. J. (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J. Immunol. 174, 3891-3896. https://doi.org/10.4049/jimmunol.174.7.3891
  14. Kim, D., Mebius, R. E., MacMicking, J. D., Jung, S., Cupedo, T., Castellanos, Y., Rho, J., Wong, B. R., Josien, R., Kim, N., Rennert, P. D. and Choi, Y. (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 192, 1467-1478. https://doi.org/10.1084/jem.192.10.1467
  15. Cremer, I., Dieu-Nosjean, M. C., Marechal, S., Dezutter-Dambuyant, C., Goddard, S., Adams, D., Winter, N., Menetrier-Caux, C., Sautes-Fridman, C., Fridman, W. H. and Mueller, C. G. (2002) Long-lived immature dendritic cells mediated by TRANCE-RANK interaction. Blood 100, 3646-3655. https://doi.org/10.1182/blood-2002-01-0312
  16. Takatori, H., Kanno, Y., Watford, W. T., Tato, C. M., Weiss, G., Ivanov, I. I., Littman, D. R. and O'Shea, J. J. (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35-41. https://doi.org/10.1084/jem.20072713
  17. Van Maele, L., Carnoy, C., Cayet, D., Songhet, P., Dumoutier, L., Ferrero, I., Janot, L., Erard, F., Bertout, J., Leger, H., Sebbane, F., Benecke, A., Renauld, J. C., Hardt, W. D., Ryffel, B. and Sirard, J. C. (2010) TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J. Immunol. 185, 1177-1185. https://doi.org/10.4049/jimmunol.1000115
  18. Crellin, N. K., Trifari, S., Kaplan, C. D., Satoh-Takayama, N., Di Santo, J. P. and Spits, H. (2010) Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 33, 752-764. https://doi.org/10.1016/j.immuni.2010.10.012
  19. Olson, J. K. and Miller, S. D. (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916-3924. https://doi.org/10.4049/jimmunol.173.6.3916
  20. Yamamoto, M., Takeda, K. and Akira, S. (2004) TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40, 861-868. https://doi.org/10.1016/j.molimm.2003.10.006
  21. Roses, R. E., Xu, S., Xu, M., Koldovsky, U., Koski, G. and Czerniecki, B. J. (2008) Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists. J. Immunol. 181, 5120-5127. https://doi.org/10.4049/jimmunol.181.7.5120
  22. Langrish, C. L., McKenzie, B. S., Wilson, N. J., de Waal Malefyt, R., Kastelein, R. A. and Cua, D. J. (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96-105. https://doi.org/10.1111/j.0105-2896.2004.00214.x
  23. Muzio, M., Bosisio, D., Polentarutti, N., D'Amico, G., Stoppacciaro, A., Mancinelli, R., van't Veer, C., Penton-Rol, G., Ruco, L. P., Allavena, P. and Mantovani, A. (2000) Differential expression and regulation of toll-like receptors(TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998-6004. https://doi.org/10.4049/jimmunol.164.11.5998
  24. Babu, S., Blauvelt, C. P., Kumaraswami, V. and Nutman, T. B. (2006) Cutting edge: diminished T cell TLR expression and function modulates the immune response in human filarial infection. J. Immunol. 176, 3885-3889. https://doi.org/10.4049/jimmunol.176.7.3885
  25. Kim, M. Y., Toellner, K. M., White, A., McConnell, F. M., Gaspal, F. M., Parnell, S. M., Jenkinson, E., Anderson, G. and Lane, P. J. (2006) Neonatal and adult CD4+ CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J. Immunol. 177, 3074-3081. https://doi.org/10.4049/jimmunol.177.5.3074
  26. Prehn, J. L., Thomas, L. S., Landers, C. J., Yu, Q. T., Michelsen, K. S. and Targan, S. R. (2007) The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J. Immunol. 178, 4033-4038. https://doi.org/10.4049/jimmunol.178.7.4033
  27. Kim, M. Y., Anderson, G., White, A., Jenkinson, E., Arlt, W., Martensson, I. L., Erlandsson, L. and Lane, P. J. (2005) OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3- inducer cells: evidence that IL-7signals regulate CD30 ligand but not OX40 ligand expression. J. Immunol. 174, 6686-6691. https://doi.org/10.4049/jimmunol.174.11.6686
  28. Kim, S., Han, S. and Kim, M. Y. (2010) Effects of interleukin-15 on human CD3(-)CD117(+)CD56(-)OX40L(+) cell differentiation. Hum. Immunol. 71, 745-750. https://doi.org/10.1016/j.humimm.2010.05.015

Cited by

  1. Rorγt+ Innate Lymphoid Cells in Intestinal Homeostasis and Immunity vol.3, pp.6, 2011, https://doi.org/10.1159/000330668
  2. Activation of Toll-like Receptor-2 by Endogenous Matrix Metalloproteinase-2 Modulates Dendritic-Cell-Mediated Inflammatory Responses vol.9, pp.5, 2014, https://doi.org/10.1016/j.celrep.2014.10.067
  3. RANKL Inhibitors Induce Osteonecrosis of the Jaw in Mice With Periapical Disease vol.29, pp.4, 2014, https://doi.org/10.1002/jbmr.2097
  4. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia vol.7, pp.293, 2015, https://doi.org/10.1126/scitranslmed.aaa5079
  5. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0055200