• Title/Summary/Keyword: Dendritic

Search Result 772, Processing Time 0.025 seconds

Polyphenol-rich Sargassum horneri alleviates atopic dermatitis-like skin lesions in NC/Nga mice by suppressing Th2-mediated cytokine IL-13

  • Suyama Prasansali, Mihindukulasooriya;Hyo Jin, Kim;Jinhee, Cho;Kalahe Hewage Iresha Nadeeka Madushani, Herath;Jiwon, Yang;Duong Thi Thuy, Dinh;Mi-Ok, Ko;You-Jin, Jeon;Ginnae, Ahn;Youngheun, Jee
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.331-347
    • /
    • 2022
  • Atopic dermatitis (AD) is one of major skin inflammatory diseases characterized by excessive Th2-mediated immune responses. Recent evidence provides that interlukin-13 (IL-13) plays the role of a key Th2 cytokine that drives the inflammation underlining AD. Due to adverse effects of commercially available synthetic drugs, the need for treatments based on natural products is gaining much attention. Sargassum horneri is an edible brown algae known for beneficial bioactivities including anti-inflammation. We investigated if polyphenol-rich S. horneri extracts (SHE) could suppress AD-like skin lesions in NC/Nga mice and if that involved inhibition of the infiltration of Th2-mediated cytokine IL-13. We observed markedly increased infiltration of IL-13 positive cells in AD-like skin lesions of mice but SHE treatments decreased it. Also, the dermal expression of IL-13 was sufficient to cause inflammatory responses in mice skin resembling human AD. SHE suppressed the dermal infiltration of inflammatory cells where IL-13 plays a crucial role in skin tissues and in the recruitment of inflammatory cells. Furthermore, it was confirmed that SHE reduced T cell, dendritic cell, and macrophage populations in spleen. Moreover, SHE decreased the collagen deposition in skin and ear dermis resulting in reduced fibrosis that occurs in AD due to excessive collagen. Taken together, our results reveal that SHE suppressed the infiltration of inflammatory cells into skin dermis by decreasing the infiltration of IL-13 positive cells. Therefore, SHE could be taken as a useful therapeutic agent to alleviate AD.

A study on the method of longitudinal connectivity for stream networks (하천의 종적 연속성 평가방법에 관한 연구)

  • Hong, Il;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.459-459
    • /
    • 2021
  • 오래 전부터 농업용수 취수 등의 목적을 위해 설치된 하천 내 횡단구조물이 약 34,000개에 달하고, 홍수피해 방지를 위해 하천변을 따라 많은 제방이 설치되어 있다. 특히 보, 낙차공, 교각 보호공 등의 횡단구조물은 흐름의 단차를 발생시킴으로써 어류의 이동 등 하천의 종적 연속성을 훼손 또는 단절하고 있어 하천 수생태계 연속성 확보 측면에서 매우 중요한 요인으로 볼 수 있다. 하천 종적 연속성과 관련된 연구는 북미, 호주, 유럽, 일본 등에서 수생 종 특히, 어류를 중심으로 장벽의 영향을 분석하는 데 중점을 두고 진행되어 왔다. 하천 네트워크 규모에서 다수의 장벽 설치에 대한 누적 효과를 분석한 사례는 거의 없으며, 서식지 및 수생태계 연결과 관련하여, 하천 시스템의 네트워크 규모에서 속성을 설명하고 정량화하는 도구 역시 찾아보기 어렵다. 본 연구에서는 하천 네트워크 내의 종적 방향의 연결성을 정량화하기 위한 방법으로 Cote 등(2009)이 제시한 DCI(Dendritic Connectivity Index) 지표를 이용하였다. 수계 연속성 지표(DCI)는 하천 수계 내의 종적 연속성 평가를 목적으로 횡단구조물의 개소수와 위치, 어류의 이동률을 누적하여 정량화한 방법으로써, 구조물 단위 평가가 아닌 하천 단위 평가 방법이다. 곡성천과 삼척오십천을 대상으로 국가어도정보시스템 및 항공사진을 통해 구축한 구조물의 개소수와 위치정보를 이용하여 시계열 DCI를 산정하였다. 그리고 2차 조사에 걸쳐 횡단구조물 현황 및 수리 특성, 어류현황 및 이동특성 조사 및 분석결과를 DCI에 반영하여 DCIm을 산정하였다. 곡성천의 경우 현재(2018년) DCI 결과는 5.63%이며, 어류 이동률 적용 결과 DCIm은 6.29%로 산정되었고, 약 11.7% 증가하는 것으로 나타났다. 삼척오십천의 현재(2018년) DCI 결과는 9.78%이며, 어류 이동률 적용결과 DCIm은 10.34%로 산정되었고, 약 5.7% 증가하는 것으로 나타났다. 향후 하천 내 수생태계의 연속성을 확보하기 위해서는 우선적으로 하천 수생태계 훼손, 단절, 연속을 효과적으로 비교·평가할 수 있으며, 이를 통해 개선사업의 우순순위 등 의사결정을 위한 방법론의 개발이 필요하다.

  • PDF

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury

  • Mi Jeong Heo;Ji Ho Suh;Kyle L. Poulsen;Cynthia Ju;Kang Ho Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.527-534
    • /
    • 2023
  • Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy

  • Tae Gun Kang;Hyo Jin Park;Jihyun Moon;June Hyung Lee;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.23.1-23.16
    • /
    • 2021
  • Chemokines are key factors that influence the migration and maintenance of relevant immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed that the controlled administration of chemokines in the tumor microenvironment may be an effective immunotherapy against cancer. Previous studies have shown that CCL3, also known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) showed rapid regression compared with the wild type MC38 tumors. Additionally, these CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors was effective in tumor regression and improved survival along with activated myeloid cells and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment would be an effective adjuvant to promote anti-tumor immune responses, and suggest that administering a long-lasting form of CCL3 in combination with PD-1 blockers can have clinical applications in cancer immunotherapy.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice (E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현)

  • Yoon, A-Ran;Kim, Do-Nyun;Seo, Min-Koo;Oh, Sang-Taek;Seo, Jung-Seon;Jun, Se-Mo;Cha, Jung-Ho;Lee, Seung-Deok;Lee, Suk-Kyeong
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • In this study, we established a radiodermatitis animal model and investigated the change in immune cell proportions in the secondary lymphoid organs. The cells responsible for the increased transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and interleukin-10 (IL-10) production in the lesions following irradiation were also investigated. The radiodermatitis model was constructed by locally exposing the posterior dorsal region of hairless-1 (HR-1) mice to 10 Gy electron (E)-ray/day for six consecutive days. The change in immune cell proportions was analyzed by FACS. Immunohistochemistry was carried out to detect the expression of cytokines and cell-specific markers in the skin. The proportions of antigen-presenting cells, T cells, and B cells in the lymph nodes and spleen were affected by E-irradiation. After irradiation, TGF-${\beta}1$ and IL-17 were co-localized in the papillary region of the dermis with keratin-14 (K-14)-positive cells rather than with regulatory T cells (Treg). IL-10 was not co-stained with Treg, T helper 17 (Th17) cells, dendritic cells, or macrophages. Our data indicate that TGF-${\beta}1$ is over-expressed mainly by proliferated keratinocytes in the lesions of a radiodermatitis animal model.