DOI QR코드

DOI QR Code

Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy

  • Tae Gun Kang (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Hyo Jin Park (Yuhan Corporation, Chemistry & Chemical Biology Team, Yuhan R&D Institute) ;
  • Jihyun Moon (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • June Hyung Lee (Yuhan Corporation, Biologics Discovery Team) ;
  • Sang-Jun Ha (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University)
  • 투고 : 2021.05.10
  • 심사 : 2021.06.09
  • 발행 : 2021.06.30

초록

Chemokines are key factors that influence the migration and maintenance of relevant immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed that the controlled administration of chemokines in the tumor microenvironment may be an effective immunotherapy against cancer. Previous studies have shown that CCL3, also known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) showed rapid regression compared with the wild type MC38 tumors. Additionally, these CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors was effective in tumor regression and improved survival along with activated myeloid cells and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment would be an effective adjuvant to promote anti-tumor immune responses, and suggest that administering a long-lasting form of CCL3 in combination with PD-1 blockers can have clinical applications in cancer immunotherapy.

키워드

과제정보

We wish to thank S.W. Lee at POSTECH for providing MC38 cell lines. This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2017R1A5A1014560, 2018R1A2A1A05076997, 2019M3A9B6065221) and by grants from Bridge Biotherapeutics, Inc., Korea.

참고문헌

  1. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018;8:1069-1086.  https://doi.org/10.1158/2159-8290.CD-18-0367
  2. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350-1355.  https://doi.org/10.1126/science.aar4060
  3. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 2018;118:9-16.  https://doi.org/10.1038/bjc.2017.434
  4. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 2016;6:827-837. 
  5. Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, Richman LP, Lin JH, Sun YH, Rech AJ. Tumor cellintrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 2018;49:178-193.e7.  https://doi.org/10.1016/j.immuni.2018.06.006
  6. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018;24:541-550.  https://doi.org/10.1038/s41591-018-0014-x
  7. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321-330.  https://doi.org/10.1038/nature21349
  8. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012;36:705-716.  https://doi.org/10.1016/j.immuni.2012.05.008
  9. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014;32:659-702.  https://doi.org/10.1146/annurev-immunol-032713-120145
  10. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017;17:559-572. https://doi.org/10.1038/nri.2017.49
  11. Nibbs RJ, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol 2013;13:815-829.  https://doi.org/10.1038/nri3544
  12. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-550.  https://doi.org/10.1038/nrc1388
  13. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-274.  https://doi.org/10.1038/nrc1586
  14. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 2011;89:207-215. 
  15. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-213.  https://doi.org/10.1056/NEJMoa020177
  16. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-2666.  https://doi.org/10.1056/NEJMoa051424
  17. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015;527:249-253. 
  18. Wang L, Amoozgar Z, Huang J, Saleh MH, Xing D, Orsulic S, Goldberg MS. Decitabine enhances lymphocyte migration and function and synergizes with ctla-4 blockade in a murine ovarian cancer model. Cancer Immunol Res 2015;3:1030-1041.  https://doi.org/10.1158/2326-6066.CIR-15-0073
  19. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005;65:465-472.  https://doi.org/10.1158/0008-5472.465.65.2
  20. Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res 2001;61:4961-4965. 
  21. Bertolini F, Dell'Agnola C, Mancuso P, Rabascio C, Burlini A, Monestiroli S, Gobbi A, Pruneri G, Martinelli G. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res 2002;62:3106-3112. 
  22. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K, Kieran MW, Luster AD, Segal RA. A smallmolecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 2003;100:13513-13518.  https://doi.org/10.1073/pnas.2235846100
  23. O'Hara MH, Messersmith W, Kindler H, Zhang W, Pitou C, Szpurka AM, Wang D, Peng S-B, Vangerow B, Khan AA. Safety and pharmacokinetics of cxcr4 peptide antagonist, ly2510924, in combination with durvalumab in advanced refractory solid tumors. J Pancreat Cancer 2020;6:21-31.  https://doi.org/10.1089/pancan.2019.0018
  24. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006;440:890-895.  https://doi.org/10.1038/nature04651
  25. Oelkrug C, Ramage JM. Enhancement of T cell recruitment and infiltration into tumours. Clin Exp Immunol 2014;178:1-8. 
  26. Trifilo MJ, Lane TE. The CC chemokine ligand 3 regulates CD11c+CD11b+CD8α- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 2004;327:8-15.  https://doi.org/10.1016/j.virol.2004.06.027
  27. Song R, Liu S, Leong KW. Effects of MIP-1 α, MIP-3 α, and MIP-3β on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 2007;15:1007-1015. https://doi.org/10.1038/mt.sj.6300129
  28. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun 2019;10:4186. 
  29. Sektioglu IM, Carretero R, Bulbuc N, Bald T, Tuting T, Rudensky AY, Hammerling GJ. Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells. Cancer Res 2017;77:291-302. 
  30. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 2017;214:895-904.  https://doi.org/10.1084/jem.20160801
  31. Allen F, Bobanga ID, Rauhe P, Barkauskas D, Teich N, Tong C, Myers J, Huang AY. CCL3 augments tumor rejection and enhances CD8+  T cell infiltration through NK and CD103+  dendritic cell recruitment via IFNγ. OncoImmunology 2017;7:e1393598. 
  32. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475:222-225.  https://doi.org/10.1038/nature10138
  33. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71-78.  https://doi.org/10.1038/nrc1256
  34. Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 2015;212:1043-1059.  https://doi.org/10.1084/jem.20141836
  35. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002;62:1093-1102. 
  36. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000;10:415-433.  https://doi.org/10.1006/scbi.2000.0379
  37. He S, Wang L, Wu Y, Li D, Zhang Y. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo. J Exp Clin Cancer Res 2010;29:37. 
  38. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, Casanova-Acebes M, Khudoynazarova M, Agudo J, Tung N, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-l1 and BRAF inhibition. Immunity 2016;44:924-938.  https://doi.org/10.1016/j.immuni.2016.03.012
  39. Ohm JE, Shurin MR, Esche C, Lotze MT, Carbone DP, Gabrilovich DI. Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 1999;163:3260-3268. https://doi.org/10.4049/jimmunol.163.6.3260