• 제목/요약/키워드: Dendrite structure

검색결과 93건 처리시간 0.024초

해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식 (Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere)

  • 부명환;이장욱;이종훈
    • Corrosion Science and Technology
    • /
    • 제19권4호
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

전기화학적 방법을 통한 다공성 코발트 박막 합성 (Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method)

  • 하성혁;신헌철
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.312-321
    • /
    • 2020
  • Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.

Cu50-Fe50 합금의 제조 및 특성평가 (Fabrication and characterization of Cu50-Fe50 alloy)

  • 이정일;딜리람;팽종민;조현수;양수민;류정호
    • 한국결정성장학회지
    • /
    • 제28권4호
    • /
    • pp.175-178
    • /
    • 2018
  • 구리 금속은 높은 열전도도로 heat sink 혹은 heat exchanger로 널리 사용되고 있다. 그러나 이에 반하여 낮은 인장강도와 사용온도 한계를 가지고 있다. 따라서 높은 열전도도, 낮은 제작비와 함께 우수한 기계적 특성이 요구된다. 본 연구에서는 이를 위하여 동철합금($Cu_{50}-Fe_{50}$ alloy)를 고주파 가열로를 이용하여 제조하고 그 특성을 조사하였다. 제조된 동철합금은 Cu, ${\alpha}$-Fe, ${\gamma}$-Fe 결정구조를 기진 dendrite 미세구조를 보여주었다. 제조된 동철합금은 XRD, FE-SEM, EDS 및 XRF를 이용하여 결정구조 및 미세구조를 분석하였으며 전력공급 접점용 소재로서의 적합성을 확인하고자 하였다.

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings)

  • 유병기;최학규;박흥일;정해용
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

수상돌기 소극체의 형태변화 분석을 위한 공초점현미경 영상 분할 및 구조추출 (Confocal Microscopy Image Segmentation and Extracting Structural Information for Morphological Change Analysis of Dendritic Spine)

  • 손진희;김민정;김명희
    • 한국시뮬레이션학회논문지
    • /
    • 제17권4호
    • /
    • pp.167-174
    • /
    • 2008
  • 공초점 현미경(confocal microscopy) 기술의 적용은 살아있는 세포를 고배율로 관찰하는 것을 가능하게 하였다. 알츠하이머나 파킨슨 질환 같은 퇴행성 뇌질환의 경우 뇌세포의 수상돌기의 형태학적 변화가 연관되어 있음이 알려져 있다. 따라서 공초점 현미경 영상으로부터 이러한 정보를 추출하는 방법에 대한 연구가 필요하다. 그러나 공초점 현미경 영상은 명암도 분포가 고르지 않고, 구조의 경계 부분의 번짐 현상 등으로 인해 구조 추출에 어려움을 겪고 있는 실정이다. 따라서 이러한 문제를 극복하고 관심 구조에 대한 특성을 추출할 수 있는 영상처리 기법이 필요하다. 본 논문에서는 뇌세포의 수상돌기 공초점 현미경 사진으로부터 구조정보를 추출하는 새로운 방법을 제안한다. 첫째, 미세 분기 구조의 경계를 향상시키는 비선형 확산 필터링을 적용한다. 둘째, 관심구조를 반복적 역치 선택 방법을 이용해 분할한다. 셋째, 분할된 구조의 분석을 위해 구조의 중심축과 경계선을 추출하기 위한 패스트 마칭 방법(Fast Marching Method)에 기반을 둔 골격화를 수행한다. 본 논문에서 제안된 방법은 기존의 방법들과는 달리 주변 잡음에 덜 민감하였으며 거친 경계선에 영향을 훨씬 적게 받음으로써 보다 정확하고 사실적인 중심축 추출 결과를 보였다.

  • PDF

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae;Chang, Hyun Young;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.49-58
    • /
    • 2017
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

일방향 응고된 Co기 초내열합금 FSX-414의 응고속도에 따른 응고조직 및 편석 거동 (Solidification and Segregation Behaviors with Solidification Rate in Co base superalloy, FSX-414)

  • 이현정;이재현;서성문;조창용;권석환;장병문
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.440-446
    • /
    • 2009
  • Co base superalloys have been widely used for the parts of gas turbine due to their excellent strength, thermal fatigue, oxidation resistance and weldability at high temperature. In this study, directional solidifications were carried out at various solidification rates, including $0.5{\sim}300{\mu}m/s$ in the Co base superalloy FSX-414. The cellular interface were formed at a low solidification rate, $1{\mu}m/s$, and the dendritic interface was found at higher solidification rates, $5{\sim}300{\mu}m/s$. As the spacing of dendrite structure decreased, the size and spacing of eutectics decreased. Dendrite arm spacing decreased with increasing solidification rates and temperature gradient. It was interesting to find the $M_{23}C_{6}$ eutectic microstructure formed between $\gamma$ dendrites. Composition analysis showed that Cr and W were segregated severely between the dendrites, which resulted in the formation of Cr-rich $M_{23}C_{6}$ and W-rich MC carbides.

카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조 (Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst)

  • 이호진;김한성
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.113-119
    • /
    • 2021
  • 본 연구에서는 유기환원제로 포름산과 촉매로 PtD/C를 사용하여 불순물이 없는 고품질 V3.5+ 전해질을 생산하였고 이를 VRFB에 적용하였다. PtD/C 촉매의 잘 배향된 3D 수상 돌기 구조는 포름산 산화 반응과 바나듐 환원 반응에 높은 활성을 보여 주었다. 그 결과 PtD/C의 촉매 전환율은 2.73 mol g-1 h-1로 polyol방법을 제조된 Pt/C의 전환율 1.67 mol g-1 h-1보다 더 높았다. 또한 VRFB 충방전 실험에서 촉매 반응으로 생성된 V3.5+ 전해질은 전해 방법으로 제조 된 표준V3.5+전해질과 동일한 성능을 보여 줌으로서 VRFB의 전해질로 사용 가능함을 증명하였다.

Nb을 첨가한 HP 초내열강관의 제조개발에 필요한 원심주조 조건이 조직과 기계적성질에 미치는 효과 (The Effects of Centrifugal Casting Conditions on the Structure and Mechanical Properties in Fabrication Development of Super Heat-Resisting Steel Pipe of HP Alloy Modified with Nb)

  • 최상호
    • 한국주조공학회지
    • /
    • 제14권6호
    • /
    • pp.566-575
    • /
    • 1994
  • The effects of varying the pouring temperature and the die preheating temperature in producing centrifugally cast HP alloy modified with Nb was evaluated on the basis of the resultant macrostructure, microstructure and hardness of these castings. Increased die preheating temperatures and pouring temperatures resulted in an increase in the thickness of the columnar dendritic zone, the primary and secondary dendrite arm spacing and the thickness of the zone of porosity at the casting I.D.(inner diameter). Lower die preheating temperature and pouring temperatures result in increased grain fineness and an increased zone of equiaxed grains. A higher hardness was achieved toward the casting O.D.(outer diameter) compared to the casting I.D., attributable to alloy segregation toward the casting I.D. and segregation differences resulting from reduced solidification cooling rates toward the casting I.D. Also, a higher hardness was realized at the cold end of the casting attributed to a more uniform distribution of carbides.

  • PDF