DOI QR코드

DOI QR Code

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, Hyun Young (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Kim, Young Sik (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2016.12.21
  • Accepted : 2017.03.07
  • Published : 2017.04.30

Abstract

Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

Keywords

References

  1. J. H. Oh, D. W. Yun, and H. Y. Chang, Power Eng., 21, 1 (2010).
  2. Y. S. Kim, Corros. Sci. Tech., 9, 20 (2010).
  3. I. S. Hwang, Industry and Energy, Report on the Corrosion Failure of Water Condenser of Uljin, pp. 15-28, NPP #5, Ministry of Commerce, Korea (2006).
  4. N. Bailey, Weldability of Ferritic Steels, p. 18, Abington Publishing, Cambridge, England (1995).
  5. U. Heubner and M. Rockel, Werstoffe und Korrosion, 37, 7 (1986). https://doi.org/10.1002/maco.19860370103
  6. M. B. Rockel, W. Herda, and U. Brill, Proc. Stainless steels '91 conf., p. 78, Chiba, ISIJ, Japan (1991).
  7. N. Suutala and M. Kurkela, Proc. Stainless Steels '84 conf., p. 240, The Metals Society, Gothenburg, London (1984).
  8. H. J. Kim, S. H. Jeon, S. T. Kim, I. S. Lee, and Y. S. Park, Corros. Sci. Tech., 13, 2 (2014).
  9. KS D 0297, Test method for determination of pitting corrosion resistance for seal weldment between tube and tube sheet (2009).
  10. ASTM G48, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (2003).
  11. ASME Code Section VIII, Division 2, Article F-3, Special Requirements for Tube-To-Tube sheet Welds (2004).
  12. ASTM A 262, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels (2002).
  13. Y. S. Kim, S. Park, and H. Y. Chang, Met. Mater. Int., 20, 69 (2014). https://doi.org/10.1007/s12540-014-1014-0
  14. J. Ki. L. Lai, K. H. Lo, and C. H. Shek, Stainless Steels - An Introduction and Their Recent Developments, p. 96, Bentham Science Publishers, Sharjah (2012).
  15. T. H. Chen, K. L. Weng, and J. R. Yang, Mater. Sci. Eng. A, 338, 259 (2002). https://doi.org/10.1016/S0921-5093(02)00093-X
  16. J. Dobranszky, P. J. Szabo, T. Berecz, T. Berecz, V. Hrotko, and M. Portko, Spectrochim. Acta B, 59, 1781 (2004). https://doi.org/10.1016/j.sab.2004.07.010
  17. I. Calliari, M. Zanesco, and E. Ramous, J. Mater. Sci., 41, 7643 (2006). https://doi.org/10.1007/s10853-006-0857-2
  18. J. Michalska and M. Sozanska, Mater. Charact., 56, 355 (2006). https://doi.org/10.1016/j.matchar.2005.11.003
  19. C. J. Park, S. H. Kwon, and H. S. Kim, Corros. Sci. Tech., 2, 18 (2003).
  20. T. Yamane, K. Suzuki, and Y. Minamino, J. Mater. Sci. Lett., 4, 296 (1985). https://doi.org/10.1007/BF00719795
  21. J. Barcik, Mater. Sci. Technol., 4, 5 (1988). https://doi.org/10.1179/mst.1988.4.1.5
  22. M. Schwind, J. Kallqvist, J. O. Nilsson, J. Agren, and H. O. Andren, Acta Mater., 48, 2473 (2000). https://doi.org/10.1016/S1359-6454(00)00069-0
  23. Y. S. Sato and H. Kokawa, Scr. Mater., 40, 659 (1999). https://doi.org/10.1016/S1359-6462(98)00483-7
  24. U. K. Mudali and B. Raj, High Nitrogen Steels and Stainless Steels-Manufacturing, Properties and Applications, 1st ed., p. 205, Narosa Publishing House, ASM International, New Delhi (2004).
  25. M. Vilpas and H. Hannien, Mater. Sci. Forum, 318-320, 603 (1999). https://doi.org/10.4028/www.scientific.net/MSF.318-320.603
  26. S. Hertman and S. Wessman, Mater. Sci. Forum, 318-320, 579 (1999). https://doi.org/10.4028/www.scientific.net/MSF.318-320.579
  27. T. Ogawa. K. Murata, S. Aoki, and E. Tsunetomi, J. Jap. Weld. Soc., 49, 564 (1980). https://doi.org/10.2207/qjjws1943.49.564
  28. G. C. Palit, V. Kain, and H. S. Gidayar, Corrosion, 49, 977(1993). https://doi.org/10.5006/1.3316025
  29. H. Baba, T. Kodama, and Y. Katada, Corros. Sci., 44, 2393 (2002). https://doi.org/10.1016/S0010-938X(02)00040-9
  30. I. Olefjord and L. Wergrelius, Corros. Sci., 38, 1203 (1996). https://doi.org/10.1016/0010-938X(96)00018-2
  31. S. Azuma, H. Miyuki, and T. Kudo, ISIJ Int., 36, 793 (1996). https://doi.org/10.2355/isijinternational.36.793
  32. H. Yashiro, D. Hirayasu, and N. Kumagai, ISIJ Int., 42, 1477 (2002). https://doi.org/10.2355/isijinternational.42.1477
  33. L. Vehovar, A. Vehovar, M. M. Hukovic, and M. Tandler, Mater. Corros., 53, 316 (2002). https://doi.org/10.1002/1521-4176(200205)53:5<316::AID-MACO316>3.0.CO;2-S
  34. W. T. Tsai, B. Reynders, M. Stratmann, and H. J. Grabke, Corros. Sci., 34, 1647 (1993). https://doi.org/10.1016/0010-938X(93)90038-I
  35. C. R. Clayton, L. Rosenzweig, and M. Oversluizen, J. Electrochem. Soc., 133, C303 (1986).
  36. M. B. Ives, Y. C. Lu, and J. L. Luo, Corros. Sci., 32, 91 (1991). https://doi.org/10.1016/0010-938X(91)90065-W
  37. R. C. Newman and M. A. A. Ajjawi, Corros. Sci., 26, 1057 (1982).
  38. H. Baba and Y. Katada, Corros. Sci., 48, 2510 (2006). https://doi.org/10.1016/j.corsci.2005.09.010
  39. H. Yashiro, D. Hirayasu, and N. Kumagai, ISIJ Int., 42, 1477 (2002). https://doi.org/10.2355/isijinternational.42.1477
  40. T. Misawa and H. Tanabe, ISIJ Int., 35, 787 (1996).
  41. J. E. Truman, M. J. Coleman, and K. R. Pirt, Br. Corros. J., 12, 236 (1977). https://doi.org/10.1179/000705977798318973
  42. S. Song, W. Song, and Z. Fang, Corros. Sci., 31, 395 (1990). https://doi.org/10.1016/0010-938X(90)90137-T
  43. S. Ningshen, U. K. Mudali, and G. Amarendra, Corros. Sci., 48, 1106 (2006). https://doi.org/10.1016/j.corsci.2005.05.003
  44. A. S. Lim and A. Atrens, Appl. Phys. A, 51, 411 (1990). https://doi.org/10.1007/BF00348382
  45. U. K. Mudali, S. Ningshen, and D. K. Dayal, Bull. Electrochem., 15, 74 (1999).
  46. R. C. Newman and T. Shahrabi, Corros. Sci., 27, 827 (1987). https://doi.org/10.1016/0010-938X(87)90040-0
  47. A. S. Vanini, J. P. Audouard, and P. Marcus, Corros. Sci., 36, 1825 (1994). https://doi.org/10.1016/0010-938X(94)90021-3
  48. G. Lothongkum, P. Wongpanya, and S. Morito, Corros. Sci., 48, 137 (2006). https://doi.org/10.1016/j.corsci.2004.11.017
  49. A. Ahmed and A. Fathy, Ironmak. Steelmak., 59, 3311 (2005).
  50. H. J. Garbke, ISIJ Int., 36, 777 (1996). https://doi.org/10.2355/isijinternational.36.777
  51. Y. Lu, R. Bandy, and C. R. Clayton, J. Electrochem. Soc., 130, 1774 (1983). https://doi.org/10.1149/1.2120091
  52. C. R. Clayton, G. P. Halada, and J. R. Kearns, Mat. Sci. Eng. A, 198, 135 (1995). https://doi.org/10.1016/0921-5093(95)80068-6
  53. I. Olefjord, B. Brox, and U. Jevelstam, J. Electrochem. Soc., 132, 2854 (1985). https://doi.org/10.1149/1.2113683
  54. C. O. A. Olsson. Corros. Sci., 37, 467 (1995). https://doi.org/10.1016/0010-938X(94)00148-Y