Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.2.49

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding  

Kim, Ki Tae (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
Chang, Hyun Young (Power Engineering Research Institute, KEPCO Engineering & Construction Company)
Kim, Young Sik (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.16, no.2, 2017 , pp. 49-58 More about this Journal
Abstract
Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.
Keywords
super austenitic stainless steel; autogenous GTAW; seal-weld; shielding nitrogen gas; pitting corrosion; critical pitting temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Oh, D. W. Yun, and H. Y. Chang, Power Eng., 21, 1 (2010).
2 Y. S. Kim, Corros. Sci. Tech., 9, 20 (2010).
3 I. S. Hwang, Industry and Energy, Report on the Corrosion Failure of Water Condenser of Uljin, pp. 15-28, NPP #5, Ministry of Commerce, Korea (2006).
4 N. Bailey, Weldability of Ferritic Steels, p. 18, Abington Publishing, Cambridge, England (1995).
5 U. Heubner and M. Rockel, Werstoffe und Korrosion, 37, 7 (1986).   DOI
6 M. B. Rockel, W. Herda, and U. Brill, Proc. Stainless steels '91 conf., p. 78, Chiba, ISIJ, Japan (1991).
7 N. Suutala and M. Kurkela, Proc. Stainless Steels '84 conf., p. 240, The Metals Society, Gothenburg, London (1984).
8 H. J. Kim, S. H. Jeon, S. T. Kim, I. S. Lee, and Y. S. Park, Corros. Sci. Tech., 13, 2 (2014).
9 KS D 0297, Test method for determination of pitting corrosion resistance for seal weldment between tube and tube sheet (2009).
10 ASTM G48, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (2003).
11 ASTM A 262, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels (2002).
12 Y. S. Kim, S. Park, and H. Y. Chang, Met. Mater. Int., 20, 69 (2014).   DOI
13 J. Ki. L. Lai, K. H. Lo, and C. H. Shek, Stainless Steels - An Introduction and Their Recent Developments, p. 96, Bentham Science Publishers, Sharjah (2012).
14 T. H. Chen, K. L. Weng, and J. R. Yang, Mater. Sci. Eng. A, 338, 259 (2002).   DOI
15 J. Dobranszky, P. J. Szabo, T. Berecz, T. Berecz, V. Hrotko, and M. Portko, Spectrochim. Acta B, 59, 1781 (2004).   DOI
16 I. Calliari, M. Zanesco, and E. Ramous, J. Mater. Sci., 41, 7643 (2006).   DOI
17 J. Michalska and M. Sozanska, Mater. Charact., 56, 355 (2006).   DOI
18 C. J. Park, S. H. Kwon, and H. S. Kim, Corros. Sci. Tech., 2, 18 (2003).
19 T. Yamane, K. Suzuki, and Y. Minamino, J. Mater. Sci. Lett., 4, 296 (1985).   DOI
20 J. Barcik, Mater. Sci. Technol., 4, 5 (1988).   DOI
21 ASME Code Section VIII, Division 2, Article F-3, Special Requirements for Tube-To-Tube sheet Welds (2004).
22 M. Schwind, J. Kallqvist, J. O. Nilsson, J. Agren, and H. O. Andren, Acta Mater., 48, 2473 (2000).   DOI
23 Y. S. Sato and H. Kokawa, Scr. Mater., 40, 659 (1999).   DOI
24 U. K. Mudali and B. Raj, High Nitrogen Steels and Stainless Steels-Manufacturing, Properties and Applications, 1st ed., p. 205, Narosa Publishing House, ASM International, New Delhi (2004).
25 M. Vilpas and H. Hannien, Mater. Sci. Forum, 318-320, 603 (1999).   DOI
26 S. Hertman and S. Wessman, Mater. Sci. Forum, 318-320, 579 (1999).   DOI
27 S. Azuma, H. Miyuki, and T. Kudo, ISIJ Int., 36, 793 (1996).   DOI
28 G. C. Palit, V. Kain, and H. S. Gidayar, Corrosion, 49, 977(1993).   DOI
29 H. Baba, T. Kodama, and Y. Katada, Corros. Sci., 44, 2393 (2002).   DOI
30 I. Olefjord and L. Wergrelius, Corros. Sci., 38, 1203 (1996).   DOI
31 H. Yashiro, D. Hirayasu, and N. Kumagai, ISIJ Int., 42, 1477 (2002).   DOI
32 L. Vehovar, A. Vehovar, M. M. Hukovic, and M. Tandler, Mater. Corros., 53, 316 (2002).   DOI
33 W. T. Tsai, B. Reynders, M. Stratmann, and H. J. Grabke, Corros. Sci., 34, 1647 (1993).   DOI
34 C. R. Clayton, L. Rosenzweig, and M. Oversluizen, J. Electrochem. Soc., 133, C303 (1986).
35 M. B. Ives, Y. C. Lu, and J. L. Luo, Corros. Sci., 32, 91 (1991).   DOI
36 R. C. Newman and M. A. A. Ajjawi, Corros. Sci., 26, 1057 (1982).
37 H. Baba and Y. Katada, Corros. Sci., 48, 2510 (2006).   DOI
38 T. Ogawa. K. Murata, S. Aoki, and E. Tsunetomi, J. Jap. Weld. Soc., 49, 564 (1980).   DOI
39 H. Yashiro, D. Hirayasu, and N. Kumagai, ISIJ Int., 42, 1477 (2002).   DOI
40 T. Misawa and H. Tanabe, ISIJ Int., 35, 787 (1996).
41 J. E. Truman, M. J. Coleman, and K. R. Pirt, Br. Corros. J., 12, 236 (1977).   DOI
42 S. Song, W. Song, and Z. Fang, Corros. Sci., 31, 395 (1990).   DOI
43 S. Ningshen, U. K. Mudali, and G. Amarendra, Corros. Sci., 48, 1106 (2006).   DOI
44 A. Ahmed and A. Fathy, Ironmak. Steelmak., 59, 3311 (2005).
45 A. S. Lim and A. Atrens, Appl. Phys. A, 51, 411 (1990).   DOI
46 U. K. Mudali, S. Ningshen, and D. K. Dayal, Bull. Electrochem., 15, 74 (1999).
47 R. C. Newman and T. Shahrabi, Corros. Sci., 27, 827 (1987).   DOI
48 A. S. Vanini, J. P. Audouard, and P. Marcus, Corros. Sci., 36, 1825 (1994).   DOI
49 G. Lothongkum, P. Wongpanya, and S. Morito, Corros. Sci., 48, 137 (2006).   DOI
50 H. J. Garbke, ISIJ Int., 36, 777 (1996).   DOI
51 Y. Lu, R. Bandy, and C. R. Clayton, J. Electrochem. Soc., 130, 1774 (1983).   DOI
52 C. R. Clayton, G. P. Halada, and J. R. Kearns, Mat. Sci. Eng. A, 198, 135 (1995).   DOI
53 I. Olefjord, B. Brox, and U. Jevelstam, J. Electrochem. Soc., 132, 2854 (1985).   DOI
54 C. O. A. Olsson. Corros. Sci., 37, 467 (1995).   DOI