• Title/Summary/Keyword: Dempster-Shafer's theory of evidence

Search Result 18, Processing Time 0.023 seconds

Dempster-Shafer Fusion of Multisensor Imagery Using Gaussian Mass Function (Gaussian분포의 질량함수를 사용하는 Dempster-Shafer영상융합)

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.419-425
    • /
    • 2004
  • This study has proposed a data fusion method based on the Dempster-Shafer evidence theory The Dempster-Shafer fusion uses mass functions obtained under the assumption of class-independent Gaussian assumption. In the Dempster-Shafer approach, uncertainty is represented by 'belief interval' equal to the difference between the values of 'belief' function and 'plausibility' function which measure imprecision and uncertainty By utilizing the Dempster-Shafer scheme to fuse the data from multiple sensors, the results of classification can be improved. It can make the users consider the regions with mixed classes in a training process. In most practices, it is hard to find the regions with a pure class. In this study, the proposed method has applied to the KOMPSAT-EOC panchromatic image and LANDSAT ETM+ NDVI data acquired over Yongin/Nuengpyung. area of Kyunggi-do. The results show that it has potential of effective data fusion for multiple sensor imagery.

Dempster-Shafer's Evidence Theory-based Edge Detection

  • Seo, Suk-Tae;Sivakumar, Krishnamoorthy;Kwon, Soon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Edges represent significant boundary information between objects or classes. Various methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, and etc. have been proposed and widely used. The methods are based on a linear convolution of mask with pre-assigned coefficients. In this paper, we propose an edge detection method based on Dempster-Shafer's evidence theory to evaluate edgeness of the given pixel. The effectiveness of the proposed method is shown through experimental results on several test images and compared with conventional methods.

Development of Arousal Level Estimation Algorithm by Membership Function and Dempster-Shafer′s Rule of Combination in Evidence (소속함수와 Dempster-Shafer 증거합 법칙을 이용한 긴장도 평가 알고리즘 개발)

  • 정순철
    • Science of Emotion and Sensibility
    • /
    • v.5 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • This research was the first step to develop Expert System for Evaluation of Human Sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was to develop an algorithm in which human arousal level can be judged using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility, and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation that was generated from imagination. To induce one final result (arousal level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal, Dempster-Shafer's Rule of Combination in Evidence was applied, through which the final arousal level was inferred.

  • PDF

Multimodal Data Fusion for Alzheimers Patients Using Dempster-Shafer Theory of Evidence

  • Majumder, Dwijesh Dutta;Bhattacharya, Nahua
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.713-718
    • /
    • 1998
  • The paper is part of an investigation by the authors on development of a knowledge based frame work for multimodal medical image in collaboration with the All India Institute of Medical Science, new Delhi. After presenting the key aspects of the Dempster-Shafer Evidence theory we have presented implementation of registration and fusion of T₁and T₂ weighted MR images and CT images of the brain of an Alzheimer's patient for minimising the uncertainty and increasing the reliability for dianostics and therapeutic planning.

  • PDF

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Intelligent Design for Protection Systems of Industrial Power System Using Dempster-Shafer's Theory of Evidence (Dempster-Shafer 증거이론을 이용한 산업 전력 계통의 지능적 보호 시스템 설계)

  • Lee, Seung-Jae;Cha, Min-Cheul;Choe, Hang-Seob;Kim, Sang-Tae;Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.988-990
    • /
    • 1997
  • In this paper, the design automation system is proposed, which adopts the expert system technology and fuzzy decision making technology. It has a capability of selecting the most desirable protective devices for the industrial power systems.

  • PDF

An Improved Dempster-Shafer Algorithm Using a Partial Conflict Measurement

  • Odgerel, Bayanmunkh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • Multiple evidences based decision making is an important functionality for computers and robots. To combine multiple evidences, mathematical theory of evidence has been developed, and it involves the most vital part called Dempster's rule of combination. The rule is used for combining multiple evidences. However, the combined result gives a counterintuitive conclusion when highly conflicting evidences exist. In particular, when we obtain two different sources of evidence for a single hypothesis, only one of the sources may contain evidence. In this paper, we introduce a modified combination rule based on the partial conflict measurement by using an absolute difference between two evidences' basic probability numbers. The basic probability number is described in details in Section 2 "Mathematical Theory of Evidence". As a result, the proposed combination rule outperforms Dempster's rule of combination. More precisely, the modified combination rule provides a reasonable conclusion when combining highly conflicting evidences and shows similar results with Dempster's rule of combination in the case of the both sources of evidence are not conflicting. In addition, when obtained evidences contain multiple hypotheses, our proposed combination rule shows more logically acceptable results in compared with the results of Dempster's rule.

Multi-sensor Data Fusion Using Weighting Method based on Event Frequency (다중센서 데이터 융합에서 이벤트 발생 빈도기반 가중치 부여)

  • Suh, Dong-Hyok;Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.581-587
    • /
    • 2011
  • A wireless sensor network needs to consist of multi-sensors in order to infer a high level of information on circumstances. Data fusion, in turn, is required to utilize the data collected from multi-sensors for the inference of information on circumstances. The current paper, based on Dempster-Shafter's evidence theory, proposes data fusion in a wireless sensor network with different weights assigned to different sensors. The frequency of events per sensor is the crucial element in calculating different weights of the data of circumstances that each sensor collects. Data fusion utilizing these different weights turns out to show remarkable difference in reliability, which makes it much easier to infer information on circumstances.

Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

  • Chen, Luyuan;Zhou, Xinyi;Xiao, Fuyuan;Deng, Yong;Mahadevan, Sankaran
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data (다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합)

  • Park No-Wook;Lee Hoonyol;Chi Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.145-162
    • /
    • 2005
  • To improve the accuracy of land-cover discrimination in SAB data classification, this paper presents a methodology that includes feature extraction and fusion steps with multi-temporal SAR data. Three features including average backscattering coefficient, temporal variability and coherence are extracted from multi-temporal SAR data by considering the temporal behaviors of backscattering characteristics of SAR sensors. Dempster-Shafer theory of evidence(D-S theory) and fuzzy logic are applied to effectively integrate those features. Especially, a feature-driven heuristic approach to mass function assignment in D-S theory is applied and various fuzzy combination operators are tested in fuzzy logic fusion. As experimental results on a multi-temporal Radarsat-1 data set, the features considered in this paper could provide complementary information and thus effectively discriminated water, paddy and urban areas. However, it was difficult to discriminate forest and dry fields. From an information fusion methodological point of view, the D-S theory and fuzzy combination operators except the fuzzy Max and Algebraic Sum operators showed similar land-cover accuracy statistics.