• Title/Summary/Keyword: Demineralized bone matrix

Search Result 64, Processing Time 0.031 seconds

Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix: Case Report (Putty형 탈회동종골을 이용한 골유도 재생술: 증례보고)

  • Jang, Han-Seung;Kim, Su-Gwan;Moon, Seong-Yong;Oh, Ji-Su;Park, Jin-Ju;Jeong, Mi-Ae;Yang, Seok-Jin;Jung, Jong-Won;Kim, Jeong-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.420-424
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., Arlington, Tenn, USA), is a newly designed, injectable putty with a reliable demineralized bone matrix (DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent osteoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

Early Result of Demineralized Bone Matrix (DBM, Genesis$^{(R)}$) in Bone Defect after Operative Treatment of Benign Bone Tumor (양성 골 종양의 수술적 치료 후 발생한 골 결손에서 탈무기화 골 기질(DBM, Genesis$^{(R)}$)의 단기 결과)

  • Seo, Hyun Je;Chung, So Hak
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2013
  • Purpose: This study was performed to evaluate the efficiency of demineralized bone matrix (DBM, Genesis$^{(R)}$) used for bone defect after operative traetment of benign bone tumors by clinical and radiological methods. Materials and Methods: DBM was used to treat bone defect after operative treatment of benign tumor from February 2012 to May 2013. Total 25 benign bone tumor cases (15 males, and 10 females) with mean age of 30.3 were studied. The diagnoses were solitary bone cyst in 9 cases, non ossifying fibroma in 5, fibrous dysplasia in 5, aneurysmal bone cyst in 3 and enchondroma in 3. In categorization by location of tumor, there were 5 cases of distal femur, 4 of proximal tibia, 3 of proximal femur, 3 of proximal humerus, 3 of phalanx, 2 of distal radius, 2 of hip bone, 2 of calcaneus, and 1 of scapula. Autogenous bone was used with DBM in 6 cases, and only DBM used in 19 cases. Mean periods of follow up were 8.7 months (range: 6 to 14 months). Amount of graft resorption and bone formation was observed with compare of post operation radiograph and the difference was shown by percentage. Resorption level was measured by DBM level which could be observed from simple x-ray, and bone formation level by bone trabecular formation level at impaired site. Results: Twenty three cases of total 25 cases showed bone union. In the 23 cases, more than 98% DBM resorption was observed after mean 4.3 months, and more than 98% bone formation was observed after mean 6.9 months. Lesser bone defect sizes showed faster bone formation and it was statistically significant (p=0.036). But other comparative studies on other factors such as, sex, age of patients and combination of autogenous bone were no statistically significant differences in graft resorption and bone formation. And there was no significant complication in periods of follow-up. Conclusion: Demineralized Bone Matrix (Genesis$^{(R)}$) is thought to be useful treatment for bone defect after operative treatment of benign bone tumor, however longer follow-up periods appears to be needed.

The effect of biphasic calcium phosphate and demineralized bone matrix on tooth eruption in mongrel dogs

  • Lee, Si Woo;Kim, Ji-Young;Hong, Ki Yong;Choi, Tae Hyun;Kim, Byung Jun;Kim, Sukwha
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.5
    • /
    • pp.239-246
    • /
    • 2021
  • Background: Bone grafts can provide an optimal environment for permanent tooth to erupt and enhance the stability of the alveolar maxilla. Although autologous bone is an optimal source for osteogenesis, its inevitable donor site morbidity has led to active research on bone substitutes. This study was designed to evaluate the safety and feasibility of using biphasic calcium phosphate (BCP; Osteon) as a bone substitute in dogs. Methods: Bilateral third and fourth premolars of four 15-week-old mongrel dogs were used. All teeth were extracted except the third premolar of the right mandible, which was used as a control. After extraction of the premolars, each dog was administered BCP (Osteon), demineralized bone matrix (DBM; DBX), and no graft in the hollow sockets of the right fourth premolar, left fourth premolar, and left third premolar, respectively. Radiographs were taken at 2-week intervals to check for tooth eruption. After 8 weeks, each dog was sacrificed, and tooth and bone biopsies were performed to check for the presence of tooth and bone substitute particle remnants. Results: Four weeks after the operation, permanent tooth eruptions had started at all the extraction sites in each dog. Eight weeks after the operation, all teeth had normally erupted, and histological examination revealed BCP particles at the right fourth premolar. Conclusion: In all four dogs, no delay in the eruption of the teeth or shape disfigurement of permanent teeth was observed on gross inspection and radiologic evaluation. On histological examination, most of the BCP and DBM were replaced by new bone. Bone substitutes can be used as graft materials in patients with alveolar clefts.

The effect of the freeze dried bone allograft and gel/putty type demineralized bone matrix on osseous regeneration in the rat calvarial defects (백서 두개골 결손부에서 동결건조골과 gel/putty 형 탈회골기질의 골재생효과)

  • Kim, Deug-Han;Hong, Ji-Youn;Pang, Eun-Kyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.349-358
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of the Freeze Dried Bone Allograft and Demineralized Bone Matrix on osseous regeneration in the rat calvarial defects. Methods: Eight mm critical-sized calvarial defects were created in the 80 male Sprague-Dawley rats. The animals were divided into 4 groups of 20 animals each. The defects were treated with Freeze Dried Bone Allograft($SureOss^{TM}$), Demineralized Bone Matrix($ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty), or were left untreated for sham-surgery control and were evaluated by histologic and histomorphometric parameters following a 2 and 8 week healing intervals. Statistical analysis was done between each groups and time intervals with ANOVA and paired t-test. Results: Defect closure, New bone area, Augmented area in the $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than in the sham-surgery control group at each healing interval(P < 0.05). In the New bone area and Defect closure, there were no significant difference between experimental groups. Augmented area in the $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than $SureOss^{TM}$ group at 2weeks(P < 0.05), however there was no significant difference at 8 weeks. Conclusions: All of $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups showed significant new bone formation and augmentation in the calvarial defect model.

Cranial bone regeneration according to different particle sizes and densities of demineralized dentin matrix in the rabbit model

  • Nam, Jin-Woo;Kim, Moon-Young;Han, Se-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.27.1-27.9
    • /
    • 2016
  • Background: The objective of this study was to place bone graft materials in cranial defects in a rabbit model and compare their bone regenerating ability according to the size and density of demineralized dentin matrix (DDM). Methods: We selected nine healthy male rabbits that were raised under the same conditions and that weighed about 3 kg. Two circular defects 8 mm in diameter were created in each side of the cranium. The defects were grafted with DDM using four different particle sizes and densities: 0.1 mL of 0.25- to 1.0-mm particles (group 1); 0. 2 mL of 0.25- to 1.0-mm particles (group 2); 0.1 mL of 1.0- to 2.0-mm particles (group 3); and 0.2 mL of 1.0- to 2. 0-mm particles (group 4). After 2, 4, and 8 weeks, the rabbits were sacrificed, and bone samples were evaluated by means of histologic, histomorphometric, and quantitative RT-PCR analysis. Results: In group 1, osteoblast activity and bone formation were greater than in the other three groups on histological examination. In groups 2, 3, and 4, dense connective tissue was seen around original bone even after 8 weeks. Histomorphometric analysis of representative sections in group 1 showed a higher rate of new bone formation, but the difference from the other groups was not statistically significant. RT-PCR analysis indicated a correlation between bone formation and protein (osteonectin and osteopontin) expression. Conclusions: DDM with a space between particles of $200{\mu}m$ was effective in bone formation, suggesting that materials with a small particle size could reasonably be used for bone grafting.

Collagen biology for bone regenerative surgery

  • Murata, Masaru
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.321-325
    • /
    • 2012
  • Collagen is widely used for regenerative therapy and pharmaceutical applications as one of the most useful scaffolds. Collagen is the most abundant protein in vertebrates and the natural substrate of various types of animal cells. Bone and dentin are mineralized tissues and almost similar in chemical components. They consist of collagen (18%), non-collagenous proteins (2%), hydroxyapatite (70%) and body fluid (10%) in weight volume. Pepsin-digested, type I collagen (atelocollagen) and heat-denatured collagen (gelatin) are basic collagenous materials for medical use. Demineralized dentin matrix (DDM) and demineralized bone matrix (DBM) belong to acid-insoluble group, and vital tooth-derived DDM is a unique dentin material including cementum and growth factors. In this review, collagen-based materials will be introduced and discussed for bone regenerative surgery.

HISTOLOGICAL TISSUE RESPONSES OF DEMINERALIZED ALLOGENEIC BONE BLOCK GRAFT IN RABBITS (가토 탈회 동종골편 이식시 조직반응에 관한 연구)

  • Jun, Young-Hwan;Kim, Young-Jo;Min, Seung-Ki;Um, In-Woong;Lee, Dong-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • To repair bony defects with tansplanted bone in the body, fresh autogenous bone is undoubtly, the most effective bone graft for clinical applications. But the demineralized bone has the matrix-induced bone formation which was suggested by Urist in 1965. Many authors assisted that demineralized bone powder induces phenotypic conversion of mesenchymal cells into osteoblasts, with high-density bone formation. The process of inducing differentiated cells becomes osteogenic properties. The purpose of this study was to evaluate the osteoinductive capacity of allogenic freeze-dried demineralized bone block (FDD, $7{\times}7mm$) and to compare FDD with the same sue of deep-frozen allogenic bone(DF), fresh autogenous bone (A) after implantation. The histological and ultrastructural features of tissue responses were examined after 1, 2, 4, 6, 8 weeks implantation of each experimental groups in the operative site of the New Zealand white rabbits. The results were as follows : 1. Inflammatory cell infiltration generally has appeared at 1 week, but reduced at 4 weeks in each group, but most severe in DF group. 2. Osteoblastic activity has increased for 4 weeks, but decreased at 6 weeks in each group and there was no significant difference among experimental groups. 3. New bone formation has begun at 1week, least activations in A groups, and showed the revesal line of bone formation among each group at 6 to 8 weeks. 4. Bone resorption has appeared at 1 week, but disappeared at 4 weeks in both A and DF groups, but more severe in DF than A groups. 5. In ultrastructural changs, the DF group have showed the most remarkable osteoclastic activities among experimental groups. 6. Osteoid or tangled collagen fibrils near the implanted sites were replaced by more mature, lamellated bony trabeculae during bone remodeling. There was little difference among each experimental groups. 7. During the convertion osteoblasts to osteocytes which embedded within the bone matrix, there was organ-less-poor cytoplasm, increased nuclear chromatin, abundant rough endothelial reticulum (RER) in each groups. From the above the findings, the DF group shored more bone resorption and foreign body reaction than FDD and A groups, and FDD group showed more new bone formation or osteoblastic activity than DF and A groups in early stage. There was no significant difference of cellular activities among the FDD DF, and A groups according to the time.

  • PDF

EVALUATION OF THE INTERFACES BETWEEN IMPLANTS AND REGENERATED BONE USING BONE MORPHOGENETIC PROTEIN AND DEMINERALIZED FREEZE-DRIED BONE (임플란트 매식시 골형성단백질 및 탈회동종골 사용에 따른 골재생 및 계면에 대한 연구)

  • Kang, Sang-Gyu;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.24-39
    • /
    • 2000
  • Various methods and graft materials have been used to fill in the defect adjacent to the implants and considered as clinically acceptable. But it is not clear whether the regenerated bone increases the implant-bone contact and supports the implant. The purpose of this study is to evaluate regenerated bone surrounding implants using bone morphogenetic protein(BMP) and demineralized freeze-dried bone(DFDB), and the interfaces between implants and regenerated bone. bBMP was extracted and partially purified from the bovine bone matrix using heparine chromatography. Demineralized freeze-dried bone was made from the dog. Inactive insoluble collagenous bone matrix(IBM) of dog was used as carrier of bBMP. Interfaces of titanium coated epoxy resin implants were processed for demineralized section for transmission electron microscopy(TEM) and those of screw type implants were for nondemineralized section for light and fluoromicroscopic examination. Implants were inserted in the inferior border of mandible of adult dogs and artificial bony defects($3{\times}3{\times}4mm$) were made at the mesial and distal side of implants. Defects were filled with BMP(BMP group) and DFDB(DFDB group). For the fluoromicroscopic examination, the fluorescent dyes(oxytetracycline, calcein green, alizarin red) were injected 2, 4, 6, 8, 12 weeks after implantation. The experimental animals were sacrificed at the 6th and the 12th week and their mandible were extirpated and processed for examination with light microscopy, fluoromicroscopy and TEM. The obtained results were as follows : 1. By the light microscopic findings, the defects were filled with woven bone at the 6th week and compact bone at the 12th week, and the osseointegrations were seen in both groups. There was no histological difference between them. 2. On the basis of the histomorphometric analysis, BMP group(6th week: 40.25%, 12th week: 56.04%) had higher bony contact ratio than DFDB group(38.37%, 42.63%). There was significant difference between two groups at the 12th week(p<0.05). 3. The amount of bone formation in BMP group was more prominent than in DFDB group. Significant difference was noted among two groups at the 6th and the 8th week(p<0.05). 4. By the transmission electron microscopic findings, $0.4-2{\mu}m$ soft tissue layer was found in adjacent to the interfaces and over the collagen fibrils of bone at the 6th week. However, about 100nm amorphous layer was noted at the interface or collagen fibrils directly extended to the titanium surface at the 12th week. There was no significant difference between two groups. 5. These results suggest that BMP and DFDB can be used as good graft materials in the regeneration of bone adjacent to implant, and BMP is more valuable as a bone inducer than DFDB.

  • PDF

The Effect of Autogenous Demineralized Dentin Matrix and Interleukin-6 on bone Regeneration

  • Jang, Won Seok;Kim, Min Gu;Hwang, Dae Suk;Kim, Gyoo Cheon;Kim, Uk Kyu
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.203-211
    • /
    • 2017
  • The aim of this study was to evaluate the role of demineralized and particulate autogenous tooth, and interleukin-6 in bone regeneration. A demineralized and particulate autogenous tooth was prepared and human osteoblast-like cells (MG63) and human osteosarcoma cells were inoculated into the culture. The rate of cell adhesion, proliferation and mineralization were examined, and the appearance of cellular attachment was observed. An 8 mm critical size defect was created in the cranium of rabbits. Nine rabbits were divided into three groups including: An experimental group A (3 rabbits), in which a demineralised and particulate autogenous tooth was grafted; an experimental group B (3 rabbits), in which a demineralized, particulate autogenous tooth was grafted in addition to interleukin-6 (20 ng/mL); and a control group. The rabbits were sacrificed at 1, 2, 4 and 6 weeks for histopathological examination with H-E and Masson's Trichrome, and immunohistochemistry with osteocalcin. The cell-based assay showed a higher rate of cell adhesion, mineralization and cellular attachment in the experimental group A compared with the control group. The animal study revealed an increased number of osteoclasts, newly formed and mature bones in the experimental group A compared with the control group. Eventually, a higher number of osteoclasts were observed in the experimental group B. However, the emergence of newly formed and mature bone was lower than in the experimental group A. The current results suggest that treatment with demineralized and particulate autogenous tooth and interleukin-6 is not effective in stimulating bone regeneration during the bone grafting procedure.