DOI QR코드

DOI QR Code

Early Result of Demineralized Bone Matrix (DBM, Genesis$^{(R)}$) in Bone Defect after Operative Treatment of Benign Bone Tumor

양성 골 종양의 수술적 치료 후 발생한 골 결손에서 탈무기화 골 기질(DBM, Genesis$^{(R)}$)의 단기 결과

  • Seo, Hyun Je (Department of Orthopedic Surgery, Kosin University Gospel Hospital) ;
  • Chung, So Hak (Department of Orthopedic Surgery, Kosin University Gospel Hospital)
  • 서현제 (고신대학교 의과대학 복음병원 정형외과학교실) ;
  • 정소학 (고신대학교 의과대학 복음병원 정형외과학교실)
  • Received : 2013.10.28
  • Accepted : 2013.12.03
  • Published : 2013.12.31

Abstract

Purpose: This study was performed to evaluate the efficiency of demineralized bone matrix (DBM, Genesis$^{(R)}$) used for bone defect after operative traetment of benign bone tumors by clinical and radiological methods. Materials and Methods: DBM was used to treat bone defect after operative treatment of benign tumor from February 2012 to May 2013. Total 25 benign bone tumor cases (15 males, and 10 females) with mean age of 30.3 were studied. The diagnoses were solitary bone cyst in 9 cases, non ossifying fibroma in 5, fibrous dysplasia in 5, aneurysmal bone cyst in 3 and enchondroma in 3. In categorization by location of tumor, there were 5 cases of distal femur, 4 of proximal tibia, 3 of proximal femur, 3 of proximal humerus, 3 of phalanx, 2 of distal radius, 2 of hip bone, 2 of calcaneus, and 1 of scapula. Autogenous bone was used with DBM in 6 cases, and only DBM used in 19 cases. Mean periods of follow up were 8.7 months (range: 6 to 14 months). Amount of graft resorption and bone formation was observed with compare of post operation radiograph and the difference was shown by percentage. Resorption level was measured by DBM level which could be observed from simple x-ray, and bone formation level by bone trabecular formation level at impaired site. Results: Twenty three cases of total 25 cases showed bone union. In the 23 cases, more than 98% DBM resorption was observed after mean 4.3 months, and more than 98% bone formation was observed after mean 6.9 months. Lesser bone defect sizes showed faster bone formation and it was statistically significant (p=0.036). But other comparative studies on other factors such as, sex, age of patients and combination of autogenous bone were no statistically significant differences in graft resorption and bone formation. And there was no significant complication in periods of follow-up. Conclusion: Demineralized Bone Matrix (Genesis$^{(R)}$) is thought to be useful treatment for bone defect after operative treatment of benign bone tumor, however longer follow-up periods appears to be needed.

목적: 골 종양의 수술적 치료 후 발생한 골 결손에 대해 골 대체물의 하나인 탈무기화 골 기질(Demineralized Bone Matrix, Genesis$^{(R)}$)을 이용하여 치료하고 그 결과를 임상적 및 방사선학적으로 분석하여 보고하고자 한다. 대상 및 방법: 2012년 2월부터 2013년 5월까지 골 종양의 수술적 치료 후 발생한 골 결손에 대해 골 대체물의 하나인 탈무기화 골 기질(Demineralized Bone Matrix, Genesis$^{(R)}$)을 이용하여 치료하였다. 총 25예의 양성 골 종양 환자에서 시행하였으며, 남자 15명, 여자 10명이었고, 평균연령은 30.3세였다. 양성 골 종양의 종류별로 보면 고립성 골낭종이 9예, 비경화 섬유종 5예, 섬유성 이형성증 5예, 동맥류상골낭종 3예, 내연골종 3예였다. 부위별로 원위 대퇴골 5예, 근위 경골 4예, 근위 대퇴골 3예, 근위 상완골 3예, 수지골 3예, 원위 요골 2예, 골반골 2예, 종골 2예, 견갑골 1예였다. 자가골을 함께 사용한 경우가 6예, DBM 단독으로 사용한 경우가 19예였다. 추시 기간은 최단 6개월에서 최장 14개월로 평균 8.7개월이었다. 주기적인 추시에서 관찰된 단순 방사선 사진에서 DBM의 이식물의 흡수 정도와 골 생성 정도를 술 후 사진과 비교하여 백분율로 표시하여 관찰하였다. 흡수 정도는 단순 방사선 사진에서 관찰할 수 있는 DBM의 부피의 변화로 측정하였고, 골 생성 정도는 결손부의 골 소주의 생성 정도로 측정하였다. 결과: 총 25예 중 23예에서 골 유합(Bone union)을 관찰 할 수 있었다. 골 유합을 보인 23예는 술 후 평균 4.3개월에 98% 이상의 DBM 흡수율을 관찰할 수 있었고 술 후 평균 6.9개월에는 98% 이상의 골 생성을 관찰 할 수 있었다. 골 결손의 양이 적은 경우 골 형성이 빨랐다(p=0.036). 하지만 그 외 환자의 성별, 나이, 자가골의 첨가 여부 등은 이식물의 흡수율이나 골 생성에 통계학적 유의성은 없었으며, 모든 경우에서 최종 추시 상 특이한 합병증은 없었다. 결론: 양성 골 종양의 수술적 치료 후 발생한 골 결손의 치료제로서 탈무기화 골 기질은 유용할 것으로 생각되나, 장기간의 추시 관찰이 필요할 것으로 사료된다.

Keywords

References

  1. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong). 2002;10:53-60. https://doi.org/10.1177/230949900201000110
  2. Armstrong JR. Types, sources, and fixation of grafts. Bonegrafting in the treatment of fractures. Baltimore: Williams and Wilkins; 1945.
  3. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2:187-208. https://doi.org/10.1002/jab.770020307
  4. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN; American Academy of Orthopaedic Surgeons. The Committee on Biological Implants. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83-A Suppl 2 Pt 2:98-103.
  5. Lind M, Bunger C: Factors stimulating bone formation. In: Gunzburg R, Szpalski M, Passuti N, et al, editors. The use of bone substitutes in spine surgery. Berlin (Germany): Springer Verlag; 18-25. 2002.
  6. Delloye C, Cnockaert N, Cornu O. Bone substitutes in 2003: an overview. Acta Orthop Belg. 2003;69:1-8.
  7. Hwang C, Bae JY, Koo KH, et al. A Comparative experimental study of allograft andporous hydroxyapatite as bone substitutes. J Korean Orthop Assoc. 2007;42:545-52. https://doi.org/10.4055/jkoa.2007.42.4.545
  8. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002;(395):44-52.
  9. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84:454-64. https://doi.org/10.2106/00004623-200203000-00020
  10. Parikh SN, Shital N. Bone graft substitutes in modern orthopedics. Orthopedics. 2002;25:1301-9.
  11. Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001;(382):42-50.
  12. Cheng EY, Gebhardt MC. Allograft reconstructions of the shoulder after bone tumor resections. Orthop Clin North Am. 1991;22:37-48.
  13. Clohisy DR, Mankin HJ. Osteoarticular allografts for reconstruction after resection of a musculoskeletal tumor in the proximal end of the tibia. J Bone Joint Surg Am. 1994;76:549-54. https://doi.org/10.2106/00004623-199404000-00009
  14. Dick HM, Malinin TI, Mnaymneh WA. Massive allograft implantation following radical resection of high-grade tumors requiring adjuvant chemotherapy treatment. Clin Orthop Relat Res. 1985;(197):88-95.
  15. Gebhardt MC, Roth YF, Mankin HJ. Osteoarticular allografts for reconstruction in the proximal part of the humerus after excision of a musculoskeletal tumor. J Bone Joint Surg Am. 1990;72:334-45. https://doi.org/10.2106/00004623-199072030-00004
  16. Kim JD, Kang NW, Lee DH, et al. Reconstruction options after surgical resection in Muskuloskeletal Tumors of the Extremity. J Korean Orthop Assoc. 1998;33:624-36.
  17. Mankin HJ, Doppelt S, Tomford W. Clinical experience with allograft implantation. The first ten years. Clin Orthop Relat Res. 1983;(174):69-86.
  18. Parrish FF. Allograft replacement of all or part of the end of a long bone following excision of a tumor. J Bone Joint Surg Am. 1973;55:1-22. https://doi.org/10.2106/00004623-197355010-00001
  19. Urist MR. Bone: formation by autoinduction. Science. 1965; 150:893-9. https://doi.org/10.1126/science.150.3698.893
  20. Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am. 1990;72:825-33. https://doi.org/10.2106/00004623-199072060-00005
  21. Bonfiglio M, Jeter WS. Immunological responses to bone. Clin Orthop Relat Res. 1972;87:19-27.
  22. Wang J, Glimcher MJ. Characterization of matrix-induced osteogenesis in rat calvarial bone defects: I. Differences in the cellular response to demineralized bone matrix implanted in calvarial defects and in subcutaneous sites. Calcif Tissue Int. 1999;65:156-65. https://doi.org/10.1007/s002239900676
  23. Martin GJ Jr, Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine (Phila Pa 1976). 1999;24:637-45. https://doi.org/10.1097/00007632-199904010-00005
  24. Helm GA, Sheehan JM, Sheehan JP, et al. Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg. 1997;86:93-100. https://doi.org/10.3171/jns.1997.86.1.0093
  25. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988; 242:1528-34. https://doi.org/10.1126/science.3201241
  26. Ozkaynak E, Schnegelsberg PN, Jin DF, et al. Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J Biol Chem. 1992;267:25220-7.