• Title/Summary/Keyword: Demineralized bone graft

Search Result 74, Processing Time 0.025 seconds

EFFECT OF HYDRATION TIME OF DEMINERALIZED FREEZE-DRIED BONE ON EARLY BONE REGENERATION IN OSSEOUS DEFECTS IN RATS (백서에서 인간 탈회동결건조골 수화시간에 따른 초기 골치유)

  • Kim, Sang-Ryul;Kim, Su-Gwan;Jang, Hyun-Seon;Cho, Se-In
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.188-195
    • /
    • 2002
  • The purpose of this investigation was to evaluate the relationship between the hydration time of demineralized freeze-dried bone (DFDB) and early new bone formation in rat calvarial defects filled with DFDB. Rats (n = 43) were divided into 4 experimental groups. Standard, transosseous circular defects of the calvaria were made midparietally. In experimental group 1, the defect was grafted immediately after soaking the DFDB. In experimental group 2, the defects were grafted with DFDB after soaking the DFDB for 10 minutes. In experimental groups 3 and 4, the defects were filled after soaking the DFDB for 30 and 60 minutes, respectively. Graft sites were analyzed histologically after healing periods of 1, 2, or 4 weeks. Each group showed similar bone regeneration at each time point by histological analysis. The results of this study were as follows: 1. After 1 week, a significant amount of inflammation, granulation tissue, and edema were found. A small amount of bone was seen, but the amount of bone did not differ between groups. 2. After 2 weeks, a small amount of new bone formation and DFDB resorption were observed. 3. After 4 weeks, a greater amount of new bone formation was observed. The greatest amount of bone formation occurred in experimental group 4 after 4 weeks. We conclude that the hydration time of DFDB does not affect new bone formation and that it is very important to control inflammation in bone grafting.

INTRA-ALVEOLAR TRANSPLANTATION OF COMPLETELY CROWN-ROOT FRACTURED TOOTH WITH DEMINERALIZED FREEZED DRIED BONE GRAFT (치은연 하방으로 파절된 치아의 탈회냉동건조골을 이용한 Intra-alveolar transplantation)

  • Lim, Hyoung-Soo;Kim, Dong-Phil;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.344-350
    • /
    • 2000
  • Incidence of crown-root fracture due to traumatic injury, have been reported 3% in the permanent dentiton, 2% in the deciduous dentition. There are two treatment methods for crown-root fractured teeth with pulp exposure, when the fracture line was located under the alveolar crest. One way is the extrusion by orthodontic force the other way is intra-alveolar transplantation which occlusally repositioning of apical fragment in the alveolar socket. Since intra-alveolar transplantation has introduced in 1970s, it was practiced as alternative to orthodontic extrusion. As the result, this method may thoughted that had a good prognosis. As a result of trauma, completely crown-root fracture was occured in the maxillary right central incisor in this case. We couldn't reposition the deepest fracture line above the alveolar crest by the conventional surgical extrusion, because apical fragment was too short. Thus, after extraction of apical fragment, we repositioned it to the socket following demineralized freezed dried bone graft, which possible to support the apical fragment. At the 15-month recall examination, the root still showed normal mobility and there was not observed any in flammatory or replacement root resorption in the periapical radiograph.

  • PDF

The Role of Pericranial Flap in Surgery of Craniosynostosis (두개골 조기 유합증 수술 시 두개골막 피판의 역할)

  • Byeon, Jun-Hee;Yim, Young-Min;Yoo, Gyeol
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.189-193
    • /
    • 2005
  • Reconstruction of calvarial bone defects from congenital anomaly or from bone loss due to traumatic or neoplastic processes remains a significant problem in craniofacial surgery and neurosurgery. To facilitate bone regeneration, there have been many trials such as autologous bone graft or allograft, and the addition of demineralized bone matrix and matrix-derived growth factor. Guided bone regeneration is one of the methods to accelerate bone healing for calvarial bone defects especially in children. Pericranium is one of the most usable structure in bone regeneration. It protects the dura and sinus, and provides mechanical connection between bone fragments. It supplies blood to bone cortex and osteoprogenitor cells and enhances bone regeneration. For maximal effect of pericranium in bone regeneration, authors used pericranium as a flap for covering calvarial defects in surgeries of 11 craniosynostosis patients and achieved satisfactory results: The bone regeneration of original cranial defect in one year after operation was 74.6%(${\pm}8.5%$). This pericranial flap would be made more effectively by individual dissection after subgaleal dissection rather than subperiosteal dissection. In this article, we reviewed the role of pericranium and reported its usefulness as a flap in surgery of craniosynostosis to maximize bone regeneration.

THE HISTOLOGIC STUDY OF THE GRAFTED hBMP-I FOR IMMEDIATE IMPLANT FIXATION (발치 후 즉시 임플란트 식립시 이식된 hBMP-I의 조직학적 고찰)

  • Lee, Eun-Young;Kim, Kyoung-Won;Choi, Hee-Won;Um, In-Woong;Chung, Ho-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.316-322
    • /
    • 2004
  • A low molecular weight component named bone morphogenetic protein(BMP) chemically isolated from the organic matrix of bone, induce postfetal connective tissue cells surrounding small blood vessels to differentiate into cartilage and bone. The end product of BMP is a spherical ossicle of lamella bone filled with red bone marrow for the functional loading. This is a important point that the graft material is embedded the defect site during the implant surgery. Because present knowledge of the relationship between BMP and bone regeneration arises mainly from studies of induced bone formation in heterotopic sites, it would be helpful to determine whether BMP plays any part in the process of bone healing. The BMPs have been shown to play crucial roles in normal skeletal development as well as bone healing and are able to activate transcription of genes involved in cellular migration, proliferation, and differentiation. The delivery of BMP on matrices has been efficacious in the treatment of defect bone in implant surgery. The purpose of the histologic study was to evaluate the effect of DLB(demineralized lyophilized bone) coated with purified human BMP(hBMP-I) in immediate implant surgery with bony defect to obtain the functional structure of implant asap. The ability of a graft of hBMP-I to accelerate bony defect repair provides a rationale for its use in immediate implant surgery that have large bone defect in edentulous area.

Clinical and histopathological study on the effect of Nonresorbable membrane with Demineralized freeze dried bone graft for Guided Bone Regeneration in Implant Dehiscence Defects (매식체 주위 열개형 골결손부에서 차단막과 골 이식술의 사용이 골 형성에 미치는 영향에 대한 임상 및 조직병리학적 연구)

  • Kwon, Chil-Sung;Hong, Ki-Seok;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.687-702
    • /
    • 2005
  • The purpose of this study is to examine the effect of non-resorbable membrane such as e-PTFE which was used with DFDB in bone regeneration on dehiscence defect in peri-implant area. Amomg the patients, who have recieved an implant surgery at the department of Periodontics in Dan Kook University Dental Hospital, 12 patients showed implant exposure due to the dehiscence defect and 15 implants of these 22 patients were the target of the treatment. Periodontists randomly applied $Gore-Tex^{(R)}$ to the patients and treated them with antibiotics for five days both preoperatively and postoperatively. Reentry period was 26 weeks on average in maxilla and 14 weeks on average in mandible. The results were as follows : 1. Dehiscence bone defect frequently appeared in premolar in mandible and anterior teeth in maxilla respectively. 2. Among 15 cases, 1 membrane exposure was observed and in this case, regenerated area was decreased. 3. In non-resorbable membrane, bone surface area $9.25{\pm}4.84$ preoperatively and significantly increased to $11.48{\pm}7.52$ postoperatively(0.05). 4. The increase of bone surface area in non-resorbable membrane was $2.23{\pm}3.38$. 5. As a result of histopathological finding, DFDB surrounded by new bone formation and lamellate bone, resorption of DFDB and bone mineralization was found. Also, fibrosis of connective tissue beneath the membrane was found. This study shows that the surgical method using DFDB and non-resorbable membrane on dehiscence defect in peri-implant area is effective in bone regeneration.

Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration (골수내천공을 동반한 골유도재생술시 법랑기질유도체의 효과)

  • Lee, Young-Jong;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.393-410
    • /
    • 2004
  • The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.

REVIEW OF METHODS FOR PROCESSING ALLOGRAFTS FOR ALVEOLAR BONE RECONSTRUCTION (치조골 재생술에 사용되는 동종골 처리방법에 대한 고찰)

  • Lee, Eun-Young;Kim, Kyoung-Won;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.4
    • /
    • pp.366-371
    • /
    • 2007
  • Evaluation of the methods of processing allogenic bone must be considered in order to make an effective choice of graft materials in oral surgery. Allograft materials processed by the tissue banking industry have varying capacities of bone reconstruction. The biological function of processed bone can be affected by many factors, like particle size, processing parameters, and inclusion or exclusion of mineral and moisture. For example, freeze drying step offers a safe and economical means for packaging, shipping, storage, and preservation of homologous bone. Demineralization of cortical bone using hydrochloric acid can produce a uniform demineralized surface with a capacity for osteoinduction. The objectives of this review were to evaluate the processing methods for allogenic bone and to characterize processed materials for grafting. It is important to understand the biological, biomechanical healing of different types of allografts to make the right choice for allogenic bone on each clinical application and to achieve a successful outcome for alveolar bone reconstruction in oral surgery.

Effect of Murine Adipose Derived Stem Cell(ADSC) on Bone Induction of Demineralized Bone Matrix(DBM) in a Rat Calvarian Defect Model (백서의 두개골 결손 모델에 있어 지방유래 줄기세포가 탈회골의 골유도에 미치는 영향)

  • Heo, Chan Yeong;Lee, Eun Hye;Seo, Seog Jin;Eun, Seok Chan;Chang, Hak;Baek, Rong Min;Minn, Kyeong Won
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.631-636
    • /
    • 2008
  • Purpose: Adipose tissue-derived stem cells(ADSC) has an osteoconductive potential and demineralized bone matrix(DBM) is an osteoinductive material. A combination of DBM and ADSC wound probably create osteoinductive properties. The purpose of this study is to determine the effect of the combination of DBM and ADSC mixture on healing of rat calvarial defect. Methods: Thirty adult male Sprague-Dawley rats were randomized into 3 groups(n=10) as 1) Control, 2) DBM alone, 3) DBM with ADSC mixture. DBM with ADSC mixture group has had a 3-day preculture of ADSC from groin fat pad. An 6 mm critical size circular calvarial defect was made in each rat. Defect was implanted with DBM alone or DBM with ADSC mixture. Control defect was left unfilled. 6 and 12 weeks after the implantation, the rats were sacrificed and the defects were evaluated by histomorphometric and radiographical studies. Results: Histomorphometric analysis revealed that DBM with ADSC mixture group showed significantly higher bone formation than DBM alone group(p<0.05). Although radiographs from DBM alone group and DBM with ADSC group revealed similar diffuse radiopaque spots dispersed throughout the defect. Densitometric analysis of calvarial defect revealed DBM with ADSC mixture group significantly higher bone formation than DBM alone(p<0.05). There was correlation of densitometry with new bone formation(Spearman's correlation of coefficient=0.804, 6 weeks, 0.802, 12 weeks). Conclusion: The DBM with ADSC mixture group showed the best healing response and the osteoinductive properties of DBM were accelerated with ADSC mixture. It will be clinically applicable that DBM and ADSC mixture in plastic and reconstructive surgery, such as alveolar cleft and congenital facial deformities that bone graft should be required.

Comparative Analysis of ABM/P-15, Bone Morphogenic Protein and Demineralized Bone Matrix after Instrumented Lumbar Interbody Fusion

  • Sathe, Ashwin;Lee, Sang-Ho;Kim, Shin-Jae;Eun, Sang Soo;Choi, Yong Soo;Lee, Shih-min;Seuk, Ju-Wan;Lee, Yoon Sun;Shin, Sang-Ha;Bae, Junseok
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.825-833
    • /
    • 2022
  • Objective : ABM/P-15 (anorganic bone matrix/15-amino acid peptide fragment) is a commercially available synthetically manufactured P-15 collagen peptide fragment, that is adsorbed on ABM. This study was done to investigate the efficacy of ABM/P-15 in achieving fusion in the lumbar spine and comparing it with that of recombinant bone morphogenic protein-2 (rhBMP-2) and demineralized bone matrix (DBM). Methods : A retrospective observational study of prospectively collected data of 140 patients who underwent lumbar spinal fusion surgeries in a single specialty spine hospital between 2016 and 2020, with a minimum 6-month follow-up was conducted. Based on the material used for the augmentation of the bone graft at the fusion site, the patients were divided into three categories namely ABM/P-15, rhBMP-2, and DBM group. Results : ABM/P-15, rhBMP-2, and DBM were used in 46, 44, and 50 patients, respectively. Patient characteristics like age, gender, bone mineral density, smoking history, and presence of diabetes mellitus were comparable amongst the three groups. Average follow-up was 16.0±5.2, 17.9±9.8, and 26.2±14.9 months, respectively in ABM/P-15, rhBMP-2, and DBM groups. The fusion was achieved in 97.9%, 93.2%, and 98% patients while the average time-to-union was 4.05±2.01, 10±4.28, and 9.44±3.49 months (p<0.001), respectively for ABM/P-15, rhBMP-2, and DBM groups. The average pre-operative Visual analogue scale score was 6.93±2.42, 7.14±1.97, 7.01±2.14 (p=0.900) for ABM/P-15, rhBMP-2 and DBM groups, respectively, which reduced to 1.02±0.80, 1.21±0.96, and 0.54±0.70 (p=0.112), respectively at the last follow up. Pre-operative Oswestry disability index scores were 52.7±18.02, 55.4±16.8, and 53.56±19.6 (p=0.751) in ABM/P-15, rhBMP-2, and DBM groups, which post-operatively reduced to 33.77±15.52, 39.42±16.47, and 38.3±15.89 (p=0.412) and further to 15.74±8.3, 17.41±10.45, and 16.76±9.81 (p=0.603), respectively at the last follow-up. Conclusion : ABM/P-15 appears to achieve union significantly earlier than rhBMP-2 and DBM in lumbar spinal fusion cases while maintaining a comparable clinical and complication profile.

Comparison of Fusion Rate between Demineralized Bone Matrix versus Autograft in Lumbar Fusion : Meta-Analysis

  • Han, Sanghyun;Park, Bumsoo;Lim, Jeong-Wook;Youm, Jin-Young;Choi, Seoung-Won;Kim, Dae Hwan;Ahn, Dong Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.673-680
    • /
    • 2020
  • The demineralized bone matrix (DBM) as the bone graft material to increase the fusion rate was widely used in spinal fusion. The current study aimed to compare the fusion rate of DBM to the fusion rate of autograft in lumbar spine fusion via meta-analysis of published literature. After systematic search, comparative studies were selected according to eligibility criteria. Checklist (risk of bias assessment tool for non-randomized study) was used to evaluate the risk of bias of the included nonrandomized controlled studies. The corresponding 95% confidence interval (95% CI) were calculated. We also used subgroup analysis to analyze the fusion rate of posterolateral lumbar fusion and lumbar interbody fusion. Eight studies were finally included in this meta-analysis. These eight studies included 581 patients. Among them, 337 patients underwent spinal fusion surgery using DBM (DBM group) and 204 patients underwent spinal fusion surgery with mainly autologous bone and without using DBM (control group). There was no significant differences of fusion rate between the two groups in posterolateral fusion analysis (risk ratio [RR], 1.03; 95% CI, 0.90-1.17; p=0.66) and interbody fusion analysis (RR, 1.13; 95% CI, 0.91-1.39; p=0.27). Based on the available evidence, the use of DBM with autograft in posterolateral lumbar spine fusion and lumbar interbody fusion showed a slightly higher fusion rate than that of autograft alone; however, there was no statistically different between two groups.