Browse > Article

Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration  

Lee, Young-Jong (Department of Periodontology, Kyung Hee University)
Park, Joon-Bong (Department of Periodontology, Kyung Hee University)
Kwon, Young-Hyuk (Department of Periodontology, Kyung Hee University)
Herr, Yeek (Department of Periodontology, Kyung Hee University)
Cho, Kyoo-Sung (Department of Periodontology, College of Dentistry, Yonsei University)
Publication Information
Journal of Periodontal and Implant Science / v.34, no.2, 2004 , pp. 393-410 More about this Journal
Abstract
The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.
Keywords
Enamel Matrix Denvative; Guide Bone Regeneration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Becker, W., Becker, B., and Caffesse, R,: A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J. Periodontol., 65:1128-1133,1994
2 Gottlow, J., Nyman, S., Lindhe, F., Karring, T. & Wennstrom, J. : New attachment formation in the human periodontium by guided tissue regeneration. Case reports.J. Clin. Periodontol., 13 : 604-616, 1986
3 McGinnis, M., Larsen, P., Miloro, Mol and Beck, F. M. : Comparision of resorbable and nonresorbable guided bone regenera- tion materials: A preliminary study. Int. J. Oral Maxillofac. Implants, 13 : 30-35, 1998
4 Iglhaut, J., Aukhil, I., Simpson, D. M., Johnston, M. C., and Koch, G. : Progeni- tor cell kinetics during guided tissue re- generation in experimental periodontal wo- unds, J. Periodont, Res., 23: 107-117, 1988
5 Owens, K. W., and Yukna, R. A. : Call- agen membrane resorption in dogs: a com- parative study. Implant Dent., 10(1) : 49- 58, 2001
6 Majzoub, Z., Berengo, M., Giardino, R., and Cardioli, G. : Role of intramarrow penetration in osseous repair : A pilot study in the rabbit calvaria. J. periodon- tol., 70 : 1510-1510, 1999
7 Simion, M., Baldoni, M., and Zaffe. D., : Jawbone enlargement using immediate im- plant placement associated with a split- crest technique and guided tissue regen- eration. Int. J. Periodont. Res. Dent. 12(6) : 462-73, 1992
8 Renvert, S., Garrett, S., Schallhorm, R., Egelberg, J.: Healing after treatment of intraosseous defects. Ill, Effect of osseous grafting and citric acid conditioning. J. Clin, Periodontol., 12 : 441-455,1985
9 Shigeyama, Y., D'Errico J.A., Stone, R., and Somerman, M.J.: Commercially pre- pared allograft material has biological act- ivity in vitro. J. Periodontol., 66 : 478-487,1995
10 Becker, W., Urist, M.R., Tucker L.M., Becker, B.E., and Ochsenbein, C.: Inad- equate induced bone formation in athymic mice. A Preliminary report. J. Periodontol., 66 : 822-828, 1995
11 Egelberg, J.: Regeneration and repair of perioontal tissues. J. Periodontal Res., 22 : 233-242, 1987
12 Schlegel, A.K. and Donath, K: BIO-OSS: a resorbable bone substitute? J, Long Term Eff Med, Implants, 8 : 201-209, 1998
13 Schwartz, Z., Weesner, T., van Dijk, S., Cochran, D.L., Mellonig, J.T., Lohmann, C.H., Carnes, D.L., Goldstein. M., Dean, D,D., and Boyan, B. D.: Ability of depro- teinized cancellous bovine bone to induce new bone formation, J. Periodontol., 71: 1258-1269, 2000
14 Park, J. B., Matsuura, M., Han, K.Y., Norderyd, O., Lin, W., Genco, R.J., and Cho, M. : Periodontal regeneration in fur- cation defects of beagle dogs using guided tissue regenerative therapy with platelet- derived growth factor, J. Periodontol, 66 : 462-477,1995   DOI   ScienceOn
15 Gestrelius, S., Andersson, C., and johan- sson, A.C. : Formulation of enamel matrix derivative for surface coating.: Kinetics and cell colonization, J. Clin. Periodontol. 24 : 678-684, 1997
16 Hammmarstrom, L., Heijl, L., and Ges- trelius, S. : Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins, J. Clin. Periodontol., 24 : 669-677, 1997
17 Lungstadaas, S.P., Lundberg, E., Ekdahl, H., Andersson, C., and Gestrelius, S : Autocrine growth factors in human per- iodontalligament cells cultured on enamel matrix derivative. J. Clin. Periodontol., 28: 181-188,2001
18 Casati, M. Z., Sallum, E.A., Caffesse, R.G., and Sallum, A.W. : Enamel matrix derivative and bone healing after guided bone regeneration in dehiscencetype defects around implants. A histomorphometric st- udy in dogs. J. Periodontol. 73: 789-796, 2002
19 Heijl, L. : Periodontal regeneration with enamel matrix derivative in one human experimental defect. J. Clin. Periodontol. 24: 693-694, 1997
20 Becker, W., Becker,B.E., and Caffesse, R.: A comparison of demineralized freeze- dried bone and autologous bone to induce bone formation in human extraction soc- kets, J. Periodontol., 65 : 1128-1133, 1994
21 Piattelli, M., Favero, G.A., Scarano, A., Orsini, G., and Piattelli, A.: Bone reactions to anorganic bovine bonefbio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants, 14 : 835-840, 1999
22 Lundgem, D. and Slotte, C.: Reconstruc- tion of anatomically complicated periodontal defects using a bioresorbable GTR barrier supported by bone mineral. A 6-month follow-up study of 6 cases. J. Clin, Per- iodontol, , 26 : 56-62, 1999
23 Melloning, J.T., Bowers, G.W., Bright, R. W., and Lawrence, J.J. : Clinical evaluation of freezedried allografts in periodontal osseous defects. J. periodontol.,47: 125- 131, 1976
24 Doll, B.A., Towle, H.J., Hollinger, J.O., Reddi, A.H., and Melloning, J.T. : The osteogenic potential of two composite graft systems using osteogeniri.J. Periodontol. 61 : 745-750, 1990
25 Nyman, S., Karring, T., and Lindhe, J. : The regenerative potential of the periodon- tal ligament. An experimental study in the monkey. J. Clin. Periodontol., 9 : 257-265, 1982
26 Schmid,J., Hammerle, C.H.F., Olah, A.J., and Lang, N.P. : Membrane permeability is unnecessary for the guided generation of new bone. An experimental study in rabbit. Clin, Oral. Implants Res., 5 : 125- 130, 1994
27 Ouhayoun, J.P,. Shabana, A.H.M., Issahakian, S., Patat, J.L., Guillemin, G., Sawaf, M.H., and Forest, N. : Histological evaluation of natural coral skeleton as a grafting material in miniature swine mandible. J. Mat. Sci- :materials in medicine. 3 : 222-228, 1992
28 Giannobile, W.V., Ryan, S., Shin, M., Su, D,L., Kaplan, P.L., and Chan, T.C. : Re- combinant human osteogenic protein-1 stimulates periodontal wound healing in classIll furcation defects. J. periodontol.. 69: 129-137, 1998
29 Schallhom, R.G.: The use of autogenous hip marrow biopsy implants for bony crater defects. J. Periodotol., 39: 145-147,1968
30 Rogenberg, M.M.: Free osseous tissue au- tograft as a predictable procedure. J. Periodontol., 42 : 195-209, 1971
31 Sigurdsson, T.J., Lee, M.B., Kubota, K., Turek, T.J., Wozney, J. M., and Wikesjo, M.E., : Periodontal repair in dogs : Re- combinant human bone morphogenetic pro- tein-2 significantly enhances periodontal regeneration, J. Periodontol. 66 : 131-138, 1995
32 Schimid, J., Wallkamm, B., Hammerle, CHF., Gogolewski, S., and Lang, N.P. : The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin, Oral. Impants Res. 8 : 244-248, 1997
33 Lansberg, C.J.: Socket seal surgery com- bined with immediate implant placement: novel approach for single-tooth replace- ment, Int. J. Periodont. Res. Dent., 17: 141-149, 1997
34 Lekovic, V., Camargo, P.M., Klokkevold, P.R., and Nedic, M.: Preservation of al- veolar bone in extraction sockets using bioabsorbable membranes. J. Periodontol., 69: 1044-1049, 1998.
35 Dragoo, M. R. and Sullivan, H. C.: A clinical and histological evaluation of aut- ogenous iliac bone grafts in human. J. Periodontol., 44 : 599-613,1973
36 Bell, W.H. : Resorption characteristics of bone and bone substitutes. Oral Surg., 17: 650-657, 1964
37 Hockers, T., Abensur, D., Valentini, P., Legrand, R., and Hammerle, C.H.: The combined use of bioresorbable membranes and xenografts or autografts in the treat- ment of bone. Clin, Oral Implants Res., 10 : 487-498, 1999
38 Lynch, S.E., Buser, D., and Hernandez: Effects of the platelet-derived growth factor/ insulin-like growth factor-1 com- bination bone regeneration around titanium dental implants, : Result of a pilot study in beagle dogs. j, periodontol. 62 : 710- 716,1991
39 Zetterstrom, o., Andersson, C., Eriksson, L., Fredriksson, A., Friskopp, J., Heden, G., Jasson, b., Lundgren, T., Nilveus, R., Olsson, A., Penvert, S., Salonen, L., Sjostrom, L., Winell, A., Ostgren, A., and Gestrelius, S. : Clinical safety of enamel matrix derivative ($EMDOGAIN^{\circledR}$) in the treatment of periodontal defects. J. Clin, Periodontol. 24: 697-704, 1997
40 Carlsson, G.E., Bergman, B., and Hedegard, B.: Changes in contour of the alveolar pro- cess. Acta. Odontol, Scand., 25: 45-75,1967
41 Hammmarstrom, L. : Enamel matrix, ce- mentum developing and regeneration. J. Clin, Periodontol., 24: 658-668, 1997
42 Niederman, R., Savitt, E. D., Heeley, J. D., and Duckworth, J. E. : Regeneration of furca bone using Gore-Tex periodontal material. Int. J. Periodont. Res. Dent. 9(6) : 468-480,1989
43 Schmitz, J. P., Hollinger, J. O. : The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. 205 : 299-308, 1986
44 Shetty, V., Han, T.J. : Alloplastic materials in reconsrtuctive periodontal surgery. Dent. Clin, North Am., 35(3) : 521-530, 1991
45 Pontoriero, R., Lindhe, J., Nyman, S., Karr- ing, T., Rosenberg, E., and Sanavi, F. : Guided tissue regeneration in the treatment of furcation defects in mandibular molars. A clinical study of degree III involvements. J. Clin. Periodontol. 16(3) : 170-174,1989
46 Reddi, A.H.: Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curro Opin, Cell Biol., 4 : 850- 855, 1992   DOI   ScienceOn
47 Yilmaz, S., Efeoglu, E., and Kille, A.R.: alveolar ridge reconstruction and/or pre- servation using root form bioglass cones. J. Clin. Periodontol., 25: 832-839,1998
48 Boyan, B.D., Weesner, T.C., Lohmann, C.H., Andreacchio, D., Carnes, D.L., Dean, D.D., Cochran, D.L., and Schwartz, Z. : Porcine fetal enamel matrix derivative enhances bone formation induced by dem- ineralized freeze dried bone allograft in vivo, J. Periodontol. 71 : 1278-1286,2000
49 Frame, J. W. : A convenient animal model for testing bone substitute materials. J. Oral. Surg, 38(3) : 176-180, 1980
50 Schmid,J., Hammerle, C.H.F., and Fluckiger, L. : Blood filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in rabbit using bioresorbable membranes. Clin. Oral. Implants. Res., 8 : 75- 81, 1997
51 Skoglund, A., Hising, P., and Young, C.: A clinical and histologic examination in humans of the osseous response to im- planted natural bone mineral. Int. J. Oral Maxillofac. Implants, 12 : 194-199, 1997
52 Karring, T., Nyman, S., Lindhe, J., and Sirirat, M. : Potentials for root resorption during periodontal wound healing. J. Clin. Periodontol., 11 : 41-52,1984
53 Zitzmann, N. U., Naef, R., and Scharer, P. : Resorbable versus nonresorbable mem- branes in combination with Bio-Oss for guided bone regeneration. Int. J. Oral Maxillofac. Implants, 12 : 844-852, 1997
54 Slotte, C. and Lundgren, D.: Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat, Clin, Oral Implants Red., 10 : 468-476, 1999
55 Gestrelius, S., Andersson, C., Lidstrom, D., Hammmarstrom, L., and Somerman, M. : In vitro studies on periodontal ligament cells and enamel matrix derivative. J. Clin, Periodontol., 24 : 685-692, 1997
56 Sculean, A., Chiamtella, G.C., Windisch, P., and Donos, N. : Clinical and histologic evaluation of human intrabony defects treated with namel matrix protein derivative (Emdogain) Int. J. Periodont. Res, Dent., 20 : 375-381. 2000
57 Valentini, P., Abensur, D., Densari, D., Graziani, J.N., and Hammerle, C.: Histologi- cal evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation pro- cedure. A human case report. Clin, Oral Implants Res., 9 : 59-64, 1998
58 Valentini, P. and Abensur, D.: Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone(Bio-Oss): a clinical study of 20 patients. Int. J. Periodont. Res. Dent., 17: 232-241, 1997
59 Simon, B.I., Hagen, S.V., Deasy, M.J., Faldu, M., and Resnansky, D.: Changes in alveolar bone height and width following ridge augmentation using bone graft and mem- branes J. Periodontol,. 71: 1774-1791,2000
60 Dahlin, C., Linde, A., and Gottiow, J. : Healing of bone defects by guided tissue regeneration. Plast, Reconstr, Surg, 5: 672-683, 1989
61 Schwartz, Z., Carnes, D.L., Pulliam. R., Lohmann, C.H., Sylvia, V.L., Liu, Y., Dean, D,D., Cochran, D.L., and Boyan, B.D., : Porcine fetal enamel matrix derivative stimulates proliferation but not differintiaof pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and in- creases proliferation and differetiation of normal human osteoblast NHOst cells. J. Periodontol. 71 : 1287-1296,2000