• 제목/요약/키워드: Demand Controller

검색결과 212건 처리시간 0.026초

전력선 모뎀을 이용한 최대 수요전력 관리 시스템 (Demand Controller Management System using Power Line Modem)

  • 김수곤;임병국;이원선;전희종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1067-1070
    • /
    • 2002
  • The maximum demand power management system(the demand controller) is an equipment for demand management. If the pre-estimated load is over the preset power, the demand controller make warnings and break the load circuit according to predefined priority. Then consumption power is maintained below the maximum demand power level. The DTU receives the control commands from demand controller, and then controls loads. In this paper, the power line cables are used for communication between the demand controller and DTUs and monitoring PC. The experiments show that the proposed system is compatible with the conventional system, and feasible for new or remodeling plant.

  • PDF

하계최대부하 억제를 위한 디맨드 콘트롤러 적용사례 및 경제성 평가 (Application of Demand Controller for Summer Peak Demand Shaving and Valuation of its Economical Efficiency)

  • 강원구;이기원;김인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.720-723
    • /
    • 1996
  • The recent summer power peak crisis has been caused by excessive use of cooling loads at daily peak time in summer. The yearly load shape of KEPCO has gradually became very steep valley. Under this situation, more efficient DSM(Demand Side Management) tools are fully required for summer peak clipping and shaving. In this paper, the KEPCO's Jeju-Do model project for DSM, especially for Demand Controller, is presented. Demand Controller was evaluated to have the very high economical efficiency against the investment in equipment, as compared with another DSM tools. There were some serious problem to apply Demand Controller to many customers in the aspect to synchronization with KEPCO's watthour meter. But these problems have solved by Keyin's new Demand Controller using vision algorithm.

  • PDF

The Design of an Optimal Demand Response Controller Under Real Time Electricity Pricing

  • Jin, Young Gyu;Choi, Tae-Seop;Park, Sung Chan;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.436-445
    • /
    • 2013
  • The use of a demand response controller is necessary for electric devices to effectively respond to time varying price signals and to achieve the benefits of cost reduction. This paper describes a new formulation with the form of constrained optimization for designing an optimal demand response controller. It is demonstrated that constrained optimization is a better approach for the demand response controller, in terms of the ambiguity of device operation and the practicality of implementation of the optimal control law. This paper also proposes a design scheme to construct a demand response controller that is useful when a system controller is already adapted or optimized for the system. The design separates the demand response function from the original system control function while leaving the system control law unchanged. The proposed formulation is simulated and compared to the system with simple dynamics. The effects of the constraints, the system characteristics and the electricity price are examined further.

철도관제사의 직무요구, 교대근무, 과업환경 및 스트레스 요인이 건강에 미치는 영향 (The Influence of Job Demand, Shift, Work Environment and Stressors on the Railway Traffic Controller's Health)

  • 김중곤;신택현
    • 대한안전경영과학회지
    • /
    • 제18권4호
    • /
    • pp.73-80
    • /
    • 2016
  • This study highlights the main effect of job demand, work shift, work environment and stressors on the railway traffic controller's health, and the moderating effect of work0life balance. The result of empirical analysis based on questionnaires received from 328 traffic controllers working at 10 railway operating companies indicates that job demand, work shift, work environment and stressors have significant effect on their health, among which stressors is a major factor. In the respect of moderating effect, WLB showed no significance except for job demand. This result implies that controller's health can not be enhanced through their individual family or leisure life. Therefore, effective countermeasures and policy to mitigate their health problems and heal their symptoms are urgent.

수용가용 직접부하제어장치 설계 (Design of Direct Load Controller for use of Demand Side)

  • 박종찬;김한구;정병환;강병희;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.149-151
    • /
    • 2005
  • Recently, power supply-demand instability due to the dramatic increase in power usage suchas air-conditioning load at summertime has brought forecasts of decrease in power supply capability. Therefore improving the load factor through systematic load management, in other words, Direct Load Control became necessary. Direct Load Control(DLC) system is kind of a load management program for stabilization of electric power supply-demand. It's purpose is limiting the demand of the demand side selected at peak load or other time periods. The paper presented a Design of Direct Load Controller for control the amount of power demand in demand side. The proposed Controller is cheaper and has ability of storing more power data than pre-existing device.

  • PDF

최대수요전력 관리 장치의 부하 예측에 관한 연구 (A Study on the Load Forecasting Methods of Peak Electricity Demand Controller)

  • 공인엽
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.137-143
    • /
    • 2014
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, load forecasting of the unit of seconds using the Exponential Smoothing Methods, ARIMA model, Kalman Filter is proposed. Also simulation of load forecasting of the unit of the seconds methods and existing forecasting methods is performed and analyzed the accuracy. As a result of simulation, the accuracy of load forecasting methods in seconds is higher.

지능형 전원설비의 원격관리제어기 개발에 관한 연구 (A Study on Development of Remote Management Controller for Intelligent Power Equipment)

  • 임병국
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.79-86
    • /
    • 2006
  • In this study, we research and develope Intelligent Remote management controller. According to the load condition, we will apply various control techniques and plan high efficient Demand control. After development, According to the Demand Control, An electricity enterprisers will expect enlargement of equipment coefficient, elevation of back up load factor and reduction effect of equipment investment. On Customer side, They will expect reduction of electric fee, saving energy and variety of service choice.

  • PDF

최대전력관리장치 보급확대를 위한 수요관리 프로그램 개발 (DSM Program of Domestic Diffusion for Demand Controller)

  • 이학주;이한별;박재덕;금병선
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.345-347
    • /
    • 2005
  • The electric demands increase, financial need for new power plant constructions and environmental problem have led to search for more efficient energy production and load management. To minimize the construction of power plants and reduce total power consumption include installation of demand controller to industrial applications. Accordingly to maximize the load control by the diffusion of demand controller, govermental economic supports as well as the analysis of energy saving effects. This paper presents the cost-effectiveness analysis for DSM program evaluation and case study to analyze demand controller DSM program.

  • PDF

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

퍼지로직 알고리즘을 이용한 최대수요전력 제어기의 개발 (DEVELOPMENT OF A MAXIMUM DEMAND CONTROLLER USING FUZZY LOGIC)

  • 한흥석;정기철;성기철;윤상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.778-780
    • /
    • 1996
  • The predictive maximum demand controllers often bring about large number of control actions during the every integrating period and/or undesirable load-disconnecting operations during the begining stage if the integrating period. To solve these problems, a fuzzy predictive maximum demand control algorithm is proposed, which determines the sensitivity if control action by urgency if the load interrupting action along with the predicted demand reading to the target or the time arriving at the end stage if the integrating period. A prototype controller employing the proposed algorithm also is developed and its performances are tested by PROCOM SYSTEMS Corperation of Korea.

  • PDF