• Title/Summary/Keyword: Delta functions

Search Result 309, Processing Time 0.028 seconds

TRANSCENDENTAL NUMBERS AS VALUES OF ELLIPTIC FUNCTIONS

  • Kim, Daeyeoul;Koo, Ja-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.675-683
    • /
    • 2000
  • As a by-product of [4], we give algebraic integers of certain values of quotients of Weierstrass $\delta'(\tau),\delta'(\tau)$-functions. We also show that special values of elliptic functions are transcendental numbers.

  • PDF

THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS

  • Hong. Sung-Geum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed p=2n/(n+1+$2\delta) and 0<\delta\leq(n-1)/2$ that the maximal function is bounded on L^p-{rad}$.

  • PDF

SUBORDINATION ON δ-CONVEX FUNCTIONS IN A SECTOR

  • MARJONO, MARJONO;THOMAS, D.K.
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • This paper concerns with the subclass of normalized analytic function f in D = {z : |z| < 1}, namely a ${\delta}$-convex function in a sector. This subclass is denoted by ${\Delta}({\delta})$, where ${\delta}$ is a real positive. Given $0<{\beta}{\leq}1$ then for $z{\in}D$, the exact ${\alpha}({\beta},\;{\delta})$ is found such that $f{\in}{\Delta}({\delta})$ implies $f{\in}S^*({\beta})$, where $S^*({\beta})$ is starlike of order ${\beta}$ in a sector. This work is a more general version of the result of Nunokawa and Thomas [11].

  • PDF

ON A CLASS OF ANALYTIC FUNCTIONS INVOLVING RUSCHEWEYH DERIVATIVES

  • Yang, Dinggong;Liu, Jinlin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.123-131
    • /
    • 2002
  • Let A(p, k) (p, k$\in$N) be the class of functions f(z) = $z^{p}$ + $a_{p+k}$ $z^{p+k}$+… analytic in the unit disk. We introduce a subclass H(p, k, λ, $\delta$, A, B) of A(p, k) by using the Ruscheweyh derivative. The object of the present paper is to show some properties of functions in the class H(p, k, λ, $\delta$, A, B). B).

NEIGHBORHOODS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Darwish, Hanan E.;Aouf, Mohamed K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.689-695
    • /
    • 2011
  • The main object of this paper is to prove several inclusion relations associated with (j, ${\delta}$)-neighborhoods of various subclasses defined by Salagean operator by making use of the familiar concept of neighborhoods of analytic functions. Special cases of some of these inclusion relations are shown to yield known results.

Some Properties Subclasses of Analytic Functions

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.531-543
    • /
    • 2014
  • The object of the present paper is to discuss some interesting properties of analytic functions f(z) associated with the subclasses $\mathcal{D}({\beta}_1,{\beta}_2,{\beta}_3;{\lambda})$, $\mathcal{G}({\theta},{\alpha})$ and $\mathcal{Q}({\theta},{\alpha})$. Also, radius problems of $\frac{1}{\delta}f({\delta}z)$ for f(z) in the class $\mathcal{D}({\beta}_1,{\beta}_2,{\beta}_3;{\lambda})$, $\mathcal{G}({\theta},{\alpha})$ and $\mathcal{Q}({\theta},{\alpha})$ are considered.

ON UNIVALENT SUBORDINATE FUNCTIONS

  • Park, Suk-Joo
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.103-111
    • /
    • 1996
  • Let $f(z)=z+\alpha_2 z^2$+…+ \alpha_{n}z^n$+… be regular and univalent in $\Delta$ = {z : │z│<1}. In this paper, using the proper subordinate functions, we investigate the some relations between subordinations and conditions of functions belonging to subclasses of univalent functions.

  • PDF

On $\delta$ -semiclassical orthogonal polynomials

  • K. H. Kwon;Lee, D. W.;Park, S. B.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.63-79
    • /
    • 1997
  • Consider an oparator equation of the form : $$ (1.1) H[y](x) = \alpha(x)\delta^2 y(x) + \beta(x)\delta y(x) = \lambda_n y(x), $$ where $\alphs(x)$ and $\beta(x)$ are polynomials of degree at most two and one respectively, $\lambda_n$ is the eigenvalue parameter, and $\delta$ is Hahn's operator $$ (1.2) \delta f(x) = \frac{(q - 1)x + \omega}{f(qx + \omega) - f(x)}, $$ for real constants $q(\neq \pm 1)$ and $\omega$.

  • PDF

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

  • Qi, Xiao-Guang;Yang, Lian-Zhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.731-745
    • /
    • 2013
  • In this paper, we investigate uniqueness problems of certain types of $q$-difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where $q$-differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function $f$ and a non-zero complex constant $q$, $E(S_j,f)=E(S_j,{\Delta}_qf)$ for $j=1,2$ imply $f(z)=t{\Delta}_qf$, where $t^n=1$. This gives a partial answer to a question of Gross concerning a zero order meromorphic function $f(z)$ and $t{\Delta}_qf$.