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NEIGHBORHOODS OF CERTAIN SUBCLASSES OF

ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Hanan E. Darwish and Mohamed K. Aouf

Abstract. The main object of this paper is to prove several inclusion re-
lations associated with (j, δ)-neighborhoods of various subclasses defined
by Salagean operator by making use of the familiar concept of neigh-

borhoods of analytic functions. Special cases of some of these inclusion
relations are shown to yield known results.

1. Introduction

Let T (j) denote the class of functions of the form:

(1.1) f(z) = z −
∞∑

k=j+1

akz
k (ak ≥ 0; j ∈ N = {1, 2, . . .})

which are analytic in the open unit disc U = {z : |z| < 1}. Following ([7] and
[10]), we define the (j, δ)-neighborhood of a function f(z) ∈ T (j) by
(1.2)

Nj,δ(f) =

g ∈ T (j) : g(z) = z −
∞∑

k=j+1

bkz
k and

∞∑
k=j+1

k |ak − bk| ≤ δ

 .

In particular, for the identity function e(z) = z, we immediately have

(1.3) Nj,δ(e) =

g ∈ T (j) : g(z) = z −
∞∑

k=j+1

bkz
k and

∞∑
k=j+1

k |bk| ≤ δ

 .

Let Sj(b, λ, β) denote the subclass of T (j) consisting of functions f(z) which
satisfy the inequality

(1.4)

∣∣∣∣∣1b
(

zf
′
(z) + λz2f

′′
(z)

λzf ′(z) + (1− λ)f(z)
− 1

)∣∣∣∣∣ < β

(z ∈ U ; b ∈ C\{0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .
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Also let Rj(b, λ, β) denote the subclass of T (j) consisting of functions f(z)
which satisfy the inequality

(1.5)

∣∣∣∣1b (f ′
(z) + λzf

′′
(z)− 1

)∣∣∣∣ < β ,

(z ∈ U ; b ∈ C\{0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .

The classes Sj(b, λ, β) and Rj(b, λ, β) are introduced and studied by Altintas
et al. [2].

For a function f(z) ∈ T (j), we define

D0f(z) = f(z) ,

D1f(z) = Df(z) = zf
′
(z) ,

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N) .
The differential operator Dn was introduced by Salagean [11]. With the help
of the differential operator Dn, we say that a function f(z) ∈ T (j) is in the
class Tj(n,m, α) if and only if

(1.6) Re

{
Dn+mf(z)

Dnf(z)

}
> α (n ∈ N0 = N ∪ {0};m ∈ N)

for some α(0 ≤ α < 1), and for all z ∈ U .
The operator Dn+m was studied by Sekine [12], Aouf et al. ([4] and [5]),

Hossen et al. [8] and Aouf [3]. We note that Tj(0, 1, α) = S∗
j (α), is the class

of starlike functions of order α and Tj(1, 1, α) = Cj(α), is the class of convex
functions of order α (Chatterjea [6] and Srivastava et al. [13]).

Let Sj(n,m, λ, γ) denote the subclass of T (j) consisting of functions f(z)
which satisfy the inequality∣∣∣∣∣1b

(
(1− λ)z(Dnf(z))

′
+ λz(Dn+mf(z))

′

(1− λ)Dnf(z) + λDn+mf(z)
− 1

)∣∣∣∣∣ < β

(z ∈ U ; b ∈ C\{0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1; n ∈ N0;m ∈ N)
which is equivalent

(1.7)

∣∣∣∣∣
(
(1− λ)z(Dnf(z))

′
+ λz(Dn+mf(z))

′

(1− λ)Dnf(z) + λDn+mf(z)
− 1

)∣∣∣∣∣ < γ,

where β |b| = γ.
Also let Rj(n,m, λ, γ) denote the subclass of T (j) consisting of functions

f(z) which satisfy the inequality∣∣∣∣1b ((1− λ)(Dnf(z))
′
+ λ(Dn+mf(z))

′
− 1
)∣∣∣∣ < β,

(z ∈ U ; b ∈ C\{0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1; n ∈ N0;m ∈ N) .



NEIGHBORHOODS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS 691

which is equivalent

(1.8)
∣∣∣((1− λ)(Dnf(z))

′
+ λ(Dn+mf(z))

′
− 1
)∣∣∣ < γ,

where β |b| = γ.
We note that:
(i) Sj(0, 1, λ, γ) = Sj(λ, γ) and Rj(0, 1, λ, γ) = Rj(λ, γ);
(ii) Sj(n, 1, λ, γ) = Sj(n, λ, γ) and Rj(n, 1, λ, γ) = Rj(n, λ, γ) (Orhan and

Kamali [9]).

2. A set of inclusion relations involving Nj,δ(e)

In our investigation of the inclusion relations involving Nj,δ(e), we shall
require Lemmas 1 and 2 below.

Lemma 1. Let the function f(z) ∈ T (j) be defined by (1.1). Then f(z) is in
the class Sj(n,m, λ, γ) if and only if

(2.1)
∞∑

k=j+1

kn[1 + λ(km − 1)][k − 1 + γ]ak ≤ γ .

Proof. We first suppose that f(z) ∈ Sj(n,m, λ, γ). Then, by appealing to the
condition (1.7), we readily get

(2.2) Re

{
(1− λ)z(Dnf(z))

′
+ λz(Dn+mf(z))

′

(1− λ)Dnf(z) + λDn+mf(z)
− 1

}
> −γ ,

or, equivalently,

(2.3) Re


−

∞∑
k=j+1

kn(k − 1)[1 + (km − 1)λ]akz
k

z −
∞∑

k=j+1

kn[1 + (km − 1)λ]akzk

 > −γ (z ∈ U) ,

where we have made use of the definition (1.1).
Now choose values of z on the real axis and let z → 1− through real values.

Then the inequality (2.3) immediately yields the desired condition (2.1).
Conversely, by applying hypothesis (2.1) and letting |z| = 1, we find that∣∣∣∣∣ (1− λ)(Dnf(z))

′
+ λz(Dn+mf(z))

′

(1− λ)Dnf(z) + λDn+mf(z)
− 1

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=j+1

kn(k − 1)[1 + (km − 1)λ]akz
k

z −
∞∑

k=j+1

kn[1 + (km − 1)λ]akzk

∣∣∣∣∣∣∣∣
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≤

∞∑
k=j+1

kn(k − 1)[1 + (km − 1)λ]ak|z|k−1

1−
∞∑

k=j+1

kn[1 + (km − 1)λ]ak|z|k−1

≤
γ

(
1−

∞∑
k=j+1

kn[1 + (km − 1)λ]ak

)
1−

∞∑
k=j+1

kn[1 + (km − 1)λ]ak

= γ.(2.4)

Hence, by the maximummodulus theorem, we have f(z) ∈ Sj(n,m, λ, γ), which
evidently completes the proof of Lemma 1. □

Similarly, we can prove the following lemma.

Lemma 2. Let the function f(z) ∈ T (j) be defined by (1.1). Then f(z) is in
the class Rj(n,m, λ, γ) if and only if

(2.5)

∞∑
k=j+1

kn+1[1 + λ(km − 1)]ak ≤ γ.

Our first inclusion relation involving Nj,δ(e) is given in the following theo-
rem.

Theorem 1. Let

(2.6) δ =
γ

(j + 1)n−1(1 + λ[(j + 1)m − 1])(j + γ)
.

Then

(2.7) Sj(n,m, λ, γ) ⊂ Nj,δ(e) .

Proof. For f(z) ∈ Sj(n,m, λ, γ), Lemma 1 immediately yields

(j + 1)n−1(1 + λ[(j + 1)m − 1])(j + γ)

∞∑
k=j+1

kak ≤ γ ,

so that
∞∑

k=j+1

kak ≤ γ

(j + 1)n−1(1 + λ[(j + 1)m − 1])(j + γ)
= δ

which, in view of the definition (1.3), establishes the inclusion relation (2.7) of
Theorem 1. □

In a similar manner, by applying the assertion (2.5) of Lemma 2 instead of
the assertion (2.1) of Lemma 1 to functions in the class Rj(n,m, λ, γ), we can
prove the following inclusion relationship.
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Theorem 2. If

(2.8) δ =
γ

(j + 1)n(1 + λ[(j + 1)m − 1])
,

then

(2.9) Rj(n,m, λ, γ) ⊂ Nj,δ(e).

Remark 1. (i) A special case of Theorem 1 and Theorem 2 when n = 0 and
m = 1 was proved by Altintas et al. [2];

(ii) A special case of Theorem 1 when b = (1 − α), 0 ≤ α < 1, λ = n = 0
and m = β = 1 was proved by Altintas and Owa [1].

3. Neighborhoods for the classes S
(α)
j (n,m, λ, γ) and

R
(α)
j (n,m, λ, γ)

In this section, we determine the neighborhood for each of the classes

S
(α)
j (n,m, λ, γ) and R

(α)
j (n,m, λ, γ) ,

which we define as follows. A function f(z) ∈ T (j) is said to be in the class

S
(α)
j (n,m, λ, γ) if there exists a function g(z) ∈ Sj(n,m, λ, γ) such that

(3.1)

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1− α (z ∈ U ; 0 ≤ α < 1) .

Analogously, a function f(z) ∈ T (j) is said to be in the class R
(α)
j (n,m, λ, γ)

if there exists a function g(z) ∈ Rj(n,m, λ, γ) such that the inequality (3.1)
holds true.

Theorem 3. If g(z) ∈ Sj(n,m, λ, γ) and

(3.2) α = 1− δ(j + 1)n−1(1 + λ[(j + 1)m − 1])(j + γ)

(j + 1)n(1 + λ[(j + 1)m − 1])(j + γ)− γ
,

where

δ ≤ (j + 1)
{
1− γ [(j + 1)n(1 + λ[(j + 1)m − 1])(1 + γ)]

−1
}
,

then

(3.3) Nj,δ(g) ⊂ S
(α)
j (n,m, λ, γ) .

Proof. Suppose that f(z) = z −
∑∞

k=j+1 akz
k ∈ Nj,δ(g). We find from (1.2)

that

(3.4)
∞∑

k=j+1

k |ak − bk| ≤ δ

which readily implies that

(3.5)
∞∑

k=j+1

|ak − bk| ≤
δ

j + 1
(j ∈ N) .
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Next, since g(z) ∈ Sj(n,m, λ, γ), we have

(3.6)
∞∑

k=j+1

bk ≤ γ

(j + 1)n(1 + λ[(j + 1)m − 1])(j + γ)
,

so that

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ ≤
∞∑

k=j+1

|ak − bk|

1−
∞∑

k=j+1

bk

≤ δ

j + 1
.

(j + 1)n(1 + λ[(j + 1)m − 1])(j + γ)

(j + 1)n(1 + λ[(j + 1)m − 1])(j + γ)− γ

=
δ(j + 1)n−1(1 + λ[(j + 1)m − 1])(j + γ)

(j + 1)n(1 + λ[(j + 1)m − 1])(j + γ)− γ
= 1− α ,(3.7)

provided that α is given by (3.2). Thus, by the above definition, f(z) ∈
S
(α)
j (n,m, λ, γ), where α given by (3.2). This evidently proves Theorem 3. □

The proof of Theorem 4 below is similar to that of Theorem 3 above, there-
fore, we omit the details involved.

Theorem 4. If g(z) ∈ Rj(n,m, λ, γ) and

(3.8) α = 1− δ(j + 1)n(1 + λ[(j + 1)m − 1])

(j + 1)n+1(1 + λ[(j + 1)m − 1])− γ
,

where

δ ≤ (j + 1)
{
1− γ [(j + 1)n (1 + λ [(j + 1)m − 1])]

−1
}
,

then

(3.9) Nj,δ(g) ⊂ R
(α)
j (n,m, λ, γ).

Remark 2. (i) A special case of Theorem 3 and Theorem 4 when n = 0 and
m = 1 was proved by Altintas et al. [2];

(ii) Putting m = 1 in the above results, we obtain the results obtained by
Orhan and Kamali [9].
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