• Title/Summary/Keyword: Delivery application

Search Result 900, Processing Time 0.025 seconds

A Study on Application of Synchronized Production System for H Automobile Plant in China (자동차 공장에 동기화 생산 적용 연구 -중국 H 자동차를 중심으로-)

  • Zhang, Jing-Lun;Lee, Doo-Yong;Jang, Jung-Hwan;Yoo, Sung-Hee;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.259-264
    • /
    • 2012
  • Automobile market was grown up by 1.7% at the first half of 2012 comparison with 2011 in China and this growth trend will be continued for a while. Under this market environment the China automobile companies expand the production capacity and result in heightening the intense competition for companies. This paper deals with the more efficient production line and production logistics through SPS(Synchronized Production System) with construction of MES(Manufacturing Execution System) in H automobile company in China. In plastic painting line we can simultaneously prepare the production quantity and delivery time according to assembly production plan by introducing MES. We can reduce the excess production and result in extreme reduction of inventory.

Robotics for Advanced Therapeutic Colonoscopy

  • Wong, Jennie YY;Ho, Khek Yu
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.552-557
    • /
    • 2018
  • Although colonoscopy was originally a diagnostic imaging procedure, it has now expanded to include an increasing range of therapeutic interventions. These procedures require precise maneuvers of instruments, execution of force, efficient transmission of force from the operator to the point of application, and sufficient dexterity in the mobilization of endoscopic surgical instruments. The conventional endoscope is not designed to support technically demanding endoscopic procedures. In case of colonoscopy, the tortuous anatomy of the colon makes inserting, moving, and orientating the endoscope difficult. Exerting excessive pressure can cause looping of the endoscope, pain to the patient, and even perforation of the colon. To mitigate the technical constraints, numerous technically enhanced systems have been developed to enable better control of instruments and precise delivery of force in the execution of surgical tasks such as apposing, grasping, traction, counter-traction, and cutting of tissues. Among the recent developments are highly dexterous robotic master and slave systems, computer-assisted or robotically enhanced conventional endoscopes, and autonomously driven locomotion devices that can effortlessly traverse the colon. Developments in endoscopic instrumentations have overcome technical barriers and opened new horizons for further advancements in therapeutic interventions. This review describes examples of some of these systems in the context of their applications to advanced therapeutic colonoscopy.

Application of Systems Engineering based Design Structure Matrix Methodology for Optimizing the Concept Design Process of Naval Ship (함정 개념설계 프로세스 최적화를 위한 시스템엔지니어링 기반의 설계구조행렬 방법론 적용)

  • Park, Jinwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Naval ship design and related other activities can be characterized by the complexity of the interactions among products, activities, and disciplines. Such complexities often result in inferior designs, cost overrun, and late-delivery. Hence there exist tremendous interests in both improving the design process itself and optimizing the interactions among design activities. This paper looks at the complexity of designing naval ships thereby leading to the innovation of current ship design practices using design structure matrix. It can be used to induce the optimal ordering of design activities as well as identify sources of complexities. The method presented here identifies coupled design activities useful for reducing the complexity of naval ship design as well as optimally reordering design activities. This paper recommends the use of design structure matrix method suitable for numerically optimizing the concept design process of naval ship, and reducing cost and time required in designing naval ships by modeling and analyzing the design activities and engineering tasks, defined in systems engineering planning documents.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

A Study on the Service Provision Direction of the National Library for Children and Young Adults in the 5G Era

  • Noh, Younghee;Ro, Ji Yoon
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.11 no.2
    • /
    • pp.77-105
    • /
    • 2021
  • In order to establish a digital-based use environment for the provision of new information services suitable for the 5G era, it is necessary to discuss the direction of service provision by the National Library of Children and Young Adults in the 5G era. Based on utilization services in other fields, library services in the 5G era, including the development and provision of employee education and training services, ultra-high-definition and 360-degree realistic contents and education on library use, provision of multi-dimensional realistic media streaming broadcasting services, provision of telepresence education programs, activation of virtual communities, implementation of hologram performance halls/exhibit centers, and provision of unmanned book delivery services, environment monitoring, safety monitoring, and customized services, were proposed. In addition, based on 5G service, 5G technology, and library application direction, advancing into a producing and supporting base for ultra-realistic and immersive contents in the 5G era, strengthening online and mobile services in the non-contact era, and establishing a smart library environment were proposed as the service provision direction for the National Library of Children and Young Adults in the 5G era.

Application of Iipidomics in food science (식품분야에서 Iipidomics 분석 기술의 활용)

  • Kim, Hyun-Jin;Jang, Gwang-Ju;Lee, Hyeon-Jeong;Kim, Bo-Min;Oh, Juhong
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.16-25
    • /
    • 2017
  • There is no doubt that accumulation of big data using multi-omics technologies will be useful to solve human's long-standing problems such as development of personalized diet and medicine, overcoming diseases, and longevity. However, in the food industry, big data based on omics is scarcely accumulated. In particular, comprehensive analysis of molecular lipid metabolites directly associated with food quality, such as taste, flavor, and texture has been very limited. Moreover, most of food lipidomics studies are applied to analyze lipid components and discriminate authenticity and freshness of limited foods including vegetable and fish oil. However, if lipid big data through food lipidomics research of various foods and materials can be accumulated, lipidomics can be used in the optimization of food processing, production, delivery system, food safety, and storage as well as functional food.

The role of percutaneous neurolysis in lumbar disc herniation: systematic review and meta-analysis

  • Manchikanti, Laxmaiah;Knezevic, Emilija;Knezevic, Nebojsa Nick;Sanapati, Mahendra R.;Kaye, Alan D.;Thota, Srinivasa;Hirsch, Joshua A.
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.346-368
    • /
    • 2021
  • Background: Recalcitrant disc herniation may result in chronic lumbar radiculopathy or sciatica. Fluoroscopically directed epidural injections and other conservative modalities may provide inadequate improvement in some patients. In these cases, percutaneous neurolysis with targeted delivery of medications is often the next step in pain management. Methods: An evidence-based system of methodologic assessment, namely, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used. Multiple databases were searched from 1966 to January 2021. Principles of the best evidence synthesis were incorporated into qualitative evidence synthesis. The primary outcome measure was the proportion of patients with significant pain relief and functional improvement (≥ 50%). Duration of relief was categorized as short-term (< 6 months) and long-term (≥ 6 months). Results: This assessment identified one high-quality randomized controlled trial (RCT) and 5 moderate-quality non-randomized studies with an application of percutaneous neurolysis in disc herniation. Overall, the results were positive, with level II evidence. Conclusions: Based on the present systematic review, with one RCT and 5 non-randomized studies, the evidence level is II for percutaneous neurolysis in managing lumbar disc herniation.

Reliability-based Message Transmission System in Healthcare Devices (헬스케어 디바이스에서의 신뢰성 기반 메시지 전달 시스템)

  • Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • The Internet of Things is valuable as a means of solving social problems such as personal, public, and industrial. Recently, the application of IoT technology to the healthcare industry is increasing. It is important to ensure reliability and security in IoT-based healthcare services. Communication protocols, wireless transmit/receive techniques, and reliability-based message delivery are essential elements in IoT healthcare devices. The system was designed and implemented to measure body temperature and activity through body temperature and acceleration sensors and deliver them to the oneM2M-based Mobius platform.

A Case Study on Using Robot at the Library: Focusing on the case of National Library of Korea (도서관에서 로봇 활용에 대한 사례 연구: 국립중앙도서관을 중심으로)

  • Kim, Kyung Cheol
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.4
    • /
    • pp.61-80
    • /
    • 2020
  • This study attempted to propose various application and function improvement plans by analyzing robots operated in the libraries. Thus, the types and functions of robots operated by 16 domestic and foreign libraries were examined. Most of them were used for Librarian Assistance (Book Inventory, Book Delivery, Etc.) and User Service (Facility Guide, Search Aids, Etc.). Besides, the introduction of robots in the National Library of Korea (NLK) and their functional limitations were analyzed. As a result, this study presented the need to develop additional functions for the robot, develop quarantine and security robots, the need for a national-level policy for robot diffusion, and build a robot ecosystem.

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.