• Title/Summary/Keyword: Delayed time

Search Result 2,089, Processing Time 0.034 seconds

Time-Discretization of Delayed Multi-Input Nonlinear System Using A new algorithm

  • Qiang, Zhang;Zhang, Zheng;Kim, Sung-Jung;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.89-91
    • /
    • 2007
  • In this paper, a new approach for a sampled-data representation of nonlinear system that has time-delayed multi-input is proposed. That is largely devoid of illconditioning and is suitable for any nonlinear problem. The new scheme is applied to nonlinear systems with two or three inputs; and then the delayed multi-input general equation is derived. The method is based on thematrix exponential theory. Itdoes not require excessive computational resources and lends itself to a short and robust piece of software that can be easily inserted into large simulation packages. A performance of the proposed method is evaluated using a nonlinear system with time-delay: maneuvering an automobile.

  • PDF

A New Technique for Solving Optimal Control Problems of the Time-delayed Systems

  • Ghomanjani, Fateme
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.333-346
    • /
    • 2018
  • An approximation scheme utilizing Bezier curves is considered for solving time-delayed optimal control problems with terminal inequality constraints. First, the problem is transformed, using a $P{\acute{a}}de$ approximation, to one without a time-delayed argument. Terminal inequality constraints, if they exist, are converted to equality constraints. A computational method based on Bezier curves in the time domain is then proposed for solving the obtained non-delay optimal control problem. Numerical examples are introduced to verify the efficiency and accuracy of the proposed technique. The findings demonstrate that the proposed method is accurate and easy to implement.

STABILITY CHANGES OF IMMEDIATELY LOADED AND DELAYED LOADED IMPLANTS IN EDENTULOUS MANDIBLE (하악 무치악에서 즉시하중과 지연하중간 임플랜트의 안정성 변화)

  • Jung, Hye-Eun;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.250-262
    • /
    • 2007
  • Statement of problem: It was reported high success rate of implant-supported fixed prostheses using with $5{\sim}6$ implants on anterior mandible. Recently, immediate loading protocol was focused to overcome disadvantages of classic 2-stage delayed loading protocol. Purpose: This clinical study was to evaluate stability changes with time of immediately loaded and delayed loaded implants in edentulous mandible and to compare stability changes with time according to implantation sites. Materials and methods: Five or six implants were placed on anterior mandible depending on the arch shape. The immediately loading group was consisted of 8 patients received their prostheses within $24{\sim}48$ hours after implantation. The delayed loading group was consisted of 8 patients received their definitive prostheses following classical prosthetic procedures after a healing period of 3 months. All patients were recalled every 6 months for check-up. The evaluations of radiographic examination, ISQ value measurement and recording of complication were done. To evaluate marginal bone level, intraoral periapical radiographs were taken with long cone paralleling technique. At every evaluation recall, all prostheses were removed and ISQ values were measured with OsstellTM on individual implants. Results: 1. None of implants was failed. All implants showed stable marginal bone levels and ISQ values. 2. Marginal bone level changes with time showed statistically significant difference between immediately loading group and delayed loading group (P<0.001). 3. ISQ value changes with time did not show statistically significant difference between immediately loading group and delayed loading group (P=0.079). ISQ value decreased with time in both groups, however, all implants showed stable ISQ value at 30 months-recall evaluation. 4. Marginal bone level changes with time did not show statistically significant differences among implantation sites (P=0.604). 5. ISQ value changes with time showed statistically significant differences among implantation sites (P=0.047). ISQ values of most posterior implants decreased with time comparing to other implants. Conclusion: Although the marginal bone level of the terminal abutment didn't different with the other implants, ISQ value of the terminal abutment was lower than that of the other implants. Therefore, further clinical evaluation would be needed in this point of view.

Delayed versus Delayed-Immediate Autologous Breast Reconstruction: A Blinded Evaluation of Aesthetic Outcomes

  • Albino, Frank P.;Patel, Ketan M.;Smith, Jesse R.;Nahabedian, Maurice Y.
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.264-270
    • /
    • 2014
  • Background The technique of delayed-immediate breast reconstruction includes immediate insertion of a tissue expander, post-mastectomy radiation, followed by reconstruction. The aesthetic benefits of delayed-immediate reconstruction compared to delayed reconstruction are postulated but remain unproven. The purpose of this study was to compare aesthetic outcomes in patients following delayed and delayed-immediate autologous breast reconstruction. Methods A retrospective analysis was performed of all patients who underwent delayed or delayed-immediate autologous breast reconstruction by the senior author from 2005 to 2011. Postoperative photographs were used to evaluate aesthetic outcomes: skin quality, scar formation, superior pole contour, inferior pole contour, and overall aesthetic outcome. Ten non-biased reviewers assessed outcomes using a 5-point Likert scale. Fisher's Exact and Wilcoxon-Mann-Whitney tests were used for comparative analysis. Results Patient age and body mass index were similar between delayed (n=20) and delayed-immediate (n=20) cohorts (P>0.05). Skin and scar quality was rated significantly higher in the delayed-immediate cohort (3.74 vs. 3.05, P<0.001 and 3.41 vs. 2.79, P<0.001; respectively). Assessment of contour-related parameters, superior pole and inferior pole, found significantly improved outcomes in the delayed-immediate cohort (3.67 vs. 2.96, P<0.001 and 3.84 vs. 3.06, P<0.001; respectively). Delayed-immediate breast reconstruction had a significantly higher overall score compared to delayed breast reconstructions (3.84 vs. 2.94, P<0.001). Smoking and the time interval from radiation to reconstruction were found to affect aesthetic outcomes (P<0.05). Conclusions Preservation of native mastectomy skin may allow for improved skin/scar quality, breast contour, and overall aesthetic outcomes following a delayed-immediate reconstructive algorithm as compared to delayed breast reconstruction.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Kalman Filtering for Linear Time-Delayed Continuous-Time Systems with Stochastic Multiplicative Noises

  • Zhang, Huanshui;Lu, Xiao;Zhang, Weihai;Wang, Wei
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.355-363
    • /
    • 2007
  • The paper deals with the Kalman stochastic filtering problem for linear continuous-time systems with both instantaneous and time-delayed measurements. Different from the standard linear system, the system state is corrupted by multiplicative white noise, and the instantaneous measurement and the delayed measurement are also corrupted by multiplicative white noise. A new approach to the problem is presented by using projection formulation and reorganized innovation analysis. More importantly, the proposed approach in the paper can be applied to solve many complicated problems such as stochastic $H_{\infty}$ estimation, $H_{\infty}$ control stochastic system with preview and so on.

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

Use of the Delayed Time Fuzzy Controller for Autonomous Wheelchairs (지연시간 퍼지제어기를 이용한 자율 주행 휠체어)

  • Ryu, Yeong-Soon;Ga, Chun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2678-2686
    • /
    • 2002
  • A novel approach is developed for avoidance of obstacles in unknown environment. This paper proposes a new way of intelligent autonomous wheelchairs for the handicapped to move safely and comfortably. It is the objective of this paper to develop delayed time fuzzy control algorithms to deal with various obstacles. This new algorithm gives the benefit of the collision free movement in real time and optimal path to the moving target. The computer simulations and the experiments are demonstrated to the effect of the suggested control method.

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF

Calculation of kinetic parameters βeff and L with modified open source Monte Carlo code OpenMC(TD)

  • Romero-Barrientos, J.;Dami, J.I. Marquez;Molina F.;Zambra, M.;Aguilera, P.;Lopez-Usquiano, F.;Parra, B.;Ruiz, A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.811-816
    • /
    • 2022
  • This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction βeff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting Λ to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.