• Title/Summary/Keyword: Delay error

Search Result 1,072, Processing Time 0.036 seconds

Delay Characteristics and Sound Quality of Space Based Digital Waveguide Model (공간 기준 디지털 도파관 모델의 지연 특성과 합성음의 음질)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.680-686
    • /
    • 2003
  • Digital waveguide model is a general method that is used in physical modeling of musical instruments. Wave motion is analyzed by time or by space in digital waveguide model. Because sampling is made via time, it is general that musical instrument model is described by wave motion of time. In this paper, we synthesized the musical instrument sound by adding instrument body model to the spatial based string model. In this way, we could improve sound quality and process musical instrument model's tone control variables effectively. We explained about delay error that happens in string and body in space based sampling and showed method to process fractional delay using FD (Fractional Delay)filter. Finally, we explained the relation between tone quality and number of delays. And we also compared the result with time base digital waveguide model.

Active Noise Control using Constrained Filtered-x LMS Algorithm (제한 Filtered-x LMS 알고리즘을 이용한 능동 소음제어)

  • 나희승;박영진
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.485-493
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithms. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popularalgorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer simulations and experiments.

  • PDF

Adaptive Resource Allocation Algorithm for HIPERLAN/2 with Error Channel (HIPERLAN/2의 에러 채널을 위한 적응적 자원 할당 알고리즘)

  • 김창균;조광오;이정규
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we proposed ARAHE(Adaptive Resource Allocation algorithm for HIPERLAN/2 with Error channel). It uses EIB(Error Indication Bits) for efficient resource allocation. We evaluate the performance of ARAHE by simulation and the result shows ARAHE has better performance than current method in the case of delay, utilization and TSR(Transmission Success Rate).

Performance Analysis of Single Bluetooth Piconet in Error-Prone Environments

  • Shin, Soo-Young;Park, Hong-Seong;Kim, Dong-Sung;Kwon, Wook-Hyun
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.229-235
    • /
    • 2007
  • This paper analyzes the performance of a Bluetooth piconet in error-prone environments. A statistical characterization of a waiting time, an end-to-end delay, and a goodput are derived analytically in terms of the arrival rates, the number of slaves, and the packet error rate (PER). For simplicity, half-symmetric piconet is assumed in this analysis. Both exhaustive and limited scheduling are considered. The analytic results are validated by simulations.

Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model (이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Extended Integral Control with the PI Controller (확장적분 제어개념을 도입한 PI 제어기에 관한 연구)

  • Ryu, Heon-Su;Jeong, Gi-Yeong;Song, Gyeong-Bin;Mun, Yeong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.345-349
    • /
    • 2000
  • This paper presents an extended integral control with the PI controller by introducing the delay and decaying factors. The extended integral control scheme is developed by substituting the proportional convolution integral control for the PI(Proportional Integral) control. So far, the integral part of PI controller produces a signal that is proportional to the time integral of the input signal to the controller. The steady-state operation points are affected forever by errors in the past due to the input signal containing the information of the error in the past. These phenomena may cause some disturbances for other control purposes related to the given PI control. Introduction of forgetting factors to the error in the past can resolve the disturbance problems. Various forgetting factors are developed using the delay elements, the decaying factors, and the combination of the delay and decaying factors. The proposed various extended integral control schemes can be applicable to the corresponding PI control designs in which the error in the past may badly affect the current steady-state operation points and may cause some disturbances for other control purposes.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Compensation of Geo-Pointing Error due to Information Transport Delay for Electro-Optical Tracking System (전자광학 추적장비의 정보 전송지연에 따른 좌표지향 오차보상)

  • Yim, Jong-Bin;Moon, Seong-Man;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • EOTS(Electro-Optical Tracking System) provides stabilized images while tracking a moving target. The key of geo-pointing is the function that fixes EOTS's sight to a specific position(geo-point) throughout aircraft maneuvers. In this paper, a major error source for the geo-pointing is identified as the transport delay of navigation information, and an augmented Kalman filter is designed to estimate the present attitude of aircraft using delayed navigation information. Simulation results including the presented scheme shows that the error due to the information transport delay reduces under half.

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.