• Title/Summary/Keyword: Degussa P25

Search Result 55, Processing Time 0.026 seconds

Photocatalytic Oxidation of Free Cyanide Using UV LED (자외선 LED를 이용한 자유 시안의 광촉매 산화)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • This study was initiated to remove free cyanide from wastewater using the process of photocatalytic oxidation. UV lamp has been extensively used as a light source in conventional photocatalytic oxidation, but numerous drawbacks of UV lamp have been raised so far. Thus, this study focused on evaluating the applicability of UV LED as an alternative light source to overcome the drawbacks of UV lamp. Furthermore, the effects of diverse operational parameters on the performance of process were investigated. The results demonstrated the applicability of UV LED as a substitute of UV lamp. Also, the results show that the performance of process was improved by the increase in the number of UV LEDs used. To acquire economic feasibility as well as high efficacy, however, it is required to determine the optimum number of UV LED prior to practical implementation of the process. Among the three types of photocatalysts (anatase, rutile, and Degussa P25) tested, the Degussa P25 showed the greatest performance, and it was proven that the process was not improved as much as the Degussa P25 through simple mixing of anatase and rutile without any pretreatment. In addition, the removal efficiency of free cyanide appeared to be increased with the decrease in the particle size of $TiO_2$ photocatalyst. Besides, the process was enhanced with injection of oxygen which is considered as a major electron acceptor in the photocatalytic oxidation.

The Photocatalytic Decomposition of Trichloroethylene(TCE) with $TiO_2$ ($TiO_2$광촉매를 이용한 Trichloroethylene(TCE)의 광분해 반응)

  • 하진욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The photocatalytic degradation of trichloroethylene(TCE) in water on various types of$TiO_2$ was studied. Surface properties of $TiO_2$were characterized by XRD, SEM, and BET in our previous work(23) . $TiO_2$from Aldrich has 100$\%$pure anatase, TiO$_2$from KIER has 100$\%$ pure rutile structure, and P25-TiO$_2$from Degussa has mixed structure of anatase(75$\%$) and rutile(25$\%$) . Firstly, optimum conditions for TCE degradation were examined in this study. Results showed that optimum loading amount of catalyst was 0.1 wt% and recirculation flow rate of mixture(distilled water and TCE) was 200 cc/min. Secondly, the effect of $TiO_2$structure on TCE degradation was examined. Results revealed that anatase structure generally has better photocatalytic activity than rutile structure. Especially, mixed structure(Degussa P25-$TiO_2$) has the highest activity due to small particle size and large specific surface area.

  • PDF

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Photocatalytic Degradation of Pheonol in UV/TiO2 Honeycomb Reactor (UV/TiO2 허니컴 반응기에서 페놀의 광산화 반응)

  • Han, Po-Keun;Park, Sang-Eun;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.100-105
    • /
    • 2006
  • The photocatalytic activity of phenol degradation was investigated with the variation of operating parameters in $UV/TiO_2$ honeycomb reactor. In the comparison of phenol degradation rates among various $TiO_2$, Ishihara (STS-02)-coated honeycomb exhibited a slightly higher photocatalytic activity than Degussa P25-coated honeycomb. On the other hand, honeycomb coated by alcohol-mixed $TiO_2$ (N Co.) did not exhibit any photocatalytic activity on phenol degradation. With the increase of Degussa P25 coating amounts, the honeycomb reactor exhibited the gradual increase of phenol degradation rates. The degradation rate of phenol over $UV/TiO_2$ (Degussa P25) honeycomb reactor was asymptotically increased up to 500 mL/min, subsequently followed by a slight decrease as the recirculation rate (100~700 mL/min) was increased. UV absorption at 269 nm was high due to partial degradation of phenol at initial reaction time because the honeycomb surface was pre-adsorbed by phenol prior to UV irradiation.

Synthesis and Photoactivity of SnO2-Doped TiO2 Thin Films (SnO2가 도핑된 TiO2 박막의 합성 및 광촉매 효과)

  • Jung, Mie-Won;Kwak, Yun-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.650-654
    • /
    • 2007
  • [ $SnO_2$ ]-doped $TiO_2$ thin films were prepared from tin (IV) bis (acetylacetonate) dichloride and titanium diisopropoxide bis (acetylacetonate) with pluronic P123 or degussa P25 as a structural-directing agent. These hydrolyzed sol were spin coated onto Si(100) wafer substrate. The microstructure, morphology and bonding states of thin films were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of these films was investigated by using indigo carmine solution.

Surface Characterization of Photocatalyst TiO$_2$ (광촉매 TiO$_2$의 표면특성 고찰)

  • 이도현;하진욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.233-236
    • /
    • 2000
  • 산업화에 따라 발생하는 산업폐수에는 많은 종류의 유해한 유기물들이 함유되어 있으며, 이러한 유독성 유기물을 제거하기 위하여 많은 연구가 진행되어 왔으나. 기존의 처리 방법들은 2차 환경오염을 유발한다는 문제점을 갖고 있다. 최근 폐수처리에 광촉매를 이용한 광분해 반응이 기존의 처리방법들에서 나타날 수 있는 문제점과 폐수중의 유독성 유기물을 제거할 수 있는 환경친화적 공정이라는 보고가 있은 후 광촉매에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 광촉매 TiO₂의 표면특성을 XRD, SEM 및 BET를 사용하여 자세히 고찰하였다. XRD 결과 Degussa P25는 anatase 구조와 rutile 구조가 섞인 형태였으며, Aldrich Degissa TiO₂는 100% anatase 구조, KIER TiO₂는 100% rutile 구조를 가졌고 SEM 결과 Aldrich와 Degussa TiO₂의 입자형태는 작은 입자들이 뭉쳐있는 형태였으나 KIER TiO₂는 작은 입자들이 독립적으로 분리된 타원형으로 입자크기가 가장 컸다. 반면 BET 결과 Degussa TiO₂의 비표면적이 59㎡/g으로 Aldrich TiO₂(6㎡/g)나 KIER TiO₂(14 ㎡/g)에 비하여 매우 큼을 알 수 있었다.

Photocatalytic conversion of CO2 into hydrocarbon fuels with standard titania (Degussa P25) using newly installed experimental setup

  • Kim, Hye Rim;Razzaq, Abdul;Heo, Hyo Jung;In, Su-Il
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.64-66
    • /
    • 2013
  • Photoreduction of $CO_2$ into hydrocarbon fuels on the surface of photocatalyst is one of the breakthroughs in the field of photocatalysis. At present various approaches have been investigated with the aim of increasing the $CO_2$ conversion efficiency. The reactor for photoconversion of $CO_2$ plays a vital role in experimental setup. In this work an attempt was made to testify a newly designed the photoreactor for conversion of $CO_2$ into useful products. The photoreactor was specifically designed for simple operation bearing features of temperature and pressure control. The reactor has been tested successively with the standard titania, Degussa P25 yielding methane with moderate production rate of 30.8 $ppm{\cdot}g^{-1}{\cdot}h^{-1}$ under UV lamp with 365 nm wavelength. The methane yield obtained is comparable to the values reported in literature. Thus we anticipate that this experimental setup equipped with newly designed photoreactor can yield competitive amounts of fuels from $CO_2$ photoredcution via 365 nm UV light illumination on various photocatalysts.

Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process (금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구)

  • Lee, Gyu-Hwan;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

A Study on the Photodegradation of VOC Using High Efficiency System (고효율 광분해시스템을 이용한 VOC 분해성능 연구)

  • Do, Young-Woong;Park, Seoung-Ae;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.160-164
    • /
    • 2008
  • In this paper, The $TiO_2$ paste was prepared by changing the ratio of $TiO_2$(Degussa, P-25), binder (A-9540) and solvent. The paste was coated on to aluminuim metal plate to investigate the photodegradation of IPA. The best efficiency was obtained with increasing $TiO_2$ content and decreasing binder content. MEK is preferred to ethanol in terms of efficiency and the lower amount of solvent enhanced the rate. We, however, found the increasing viscosity of the paste and cracking with the lower content of solvent(MEK). In conclusion, the optimum activity was obtained when the ratio of $TiO_2$, Organic binder(A-9540) and MEK was 1.75 : 0.25 : 10.

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF